中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (5): 594-600 DOI: 10.7536/PC141133 Previous Articles   Next Articles

• Review and evaluation •

Molecular Mechanism of Protein S-Nitrosylation and Its Correlation with Human Diseases

Shi Ting1, Chen Ming1, Chen Xiongping1, Wang Jitao1, Wan Ajun2, Zhao Yi-Lei*1   

  1. 1. School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Basic Research Program of China (No. 2012CB721005, 2013CB966802), the National Natural Science Foundation of China (No. 21102090, J1210047), and the Shanghai Municipal Council of Science and Technology (No. 13YZ032).
PDF ( 5949 ) Cited
Export

EndNote

Ris

BibTeX

Protein S-nitrosylation (SNO) is a dynamic and reversible oxidative post-translational modification, widespread in mammals, plants and microorganisms. Previous mechanistic investigation with high-level quantum calculations indicated that many meta-stable intermediates present in the reaction pathway. On the other hand, S-nitrosylation level significantly changes in various human diseases, including tumor, inflammation, aging, Alzheimers disease (AD) and Parkinsons disease (PD). More intensive study has become an urgent need for drug and therapy development. In this paper, molecular mechanism and site-specificity of SNO are summarized, the biological functions are discussed, and especially the correlation between SNO and human diseases are presented.

Contents
1 Formation mechanism of S-nitrosylation (SNO)
2 Site specificity of SNO
3 Detection methods of SNO
4 Biological functions of SNO
5 SNO and diseases
5.1 SNO and transportation of blood
5.2 SNO and diabetes
5.3 SNO and neurodegenerative diseases
5.4 SNO and asthma symptoms
5.5 SNO and cancers
6 SNO and cell apoptosis
7 Conclusion

CLC Number: 

[1] Stamler J S. Cell, 1994, 78: 931.
[2] Zhao Y L, Houk K N, Olson L P. J. Phys. Chem. A, 2004, 108: 5864.
[3] Zhao Y L, Bartberger M D, Goto K, Shimada K, Kawashima T, Houk K N. J. Am. Chem. Soc., 2005, 127: 7964.
[4] Zhao Y L, Houk K N. J. Am. Chem. Soc., 2006, 128: 1422.
[5] Zhao Y L, McCarren P R, Houk K N, Choi B Y, Toone E J. J. Am. Chem. Soc., 2005, 127: 10917.
[6] Liang J, Cheng S, Hou J, Xu Z, Zhao Y L. Sci. China Chem., 2012, 55: 2081.
[7] Gaston B M. Mol. Interv., 2003, 3: 253.
[8] Greco T M, Hodara R, Parastatidis I, Heijnen H F G, Dennehy M K, Liebler D C, Ischiropoulos H. Proc. Natl. Acad. Sci.U.S.A., 2006, 103: 7420.
[9] Evangelista A M, Kohr M J, Murphy E. Antioxid. Redox Sign., 2012, 19: 1209.
[10] Cheng S, Shi T, Wang X L, Liang J, Wu H, Xie L, Li Y, Zhao Y L. Mol. Biosyst., 2014, 10: 2597.
[11] Marino S M, Gladyshev V N. J. Mol. Biol., 2010, 395: 844.
[12] Doulias P T, Greene J L, Greco T M, Tenopoulou M, Seeholzer S H, Dunbrack R L, Ischiropoulos H. Proc. Natl. Acad. Sci.U. S. A., 2010, 107: 16958.
[13] Kovacs I, Lindermayr C. Front. Plant Sci., 2013, 4: 137.
[14] Kelleher Z T, Sha Y, Foster M W, Foster W M, Forrester M T, Marshall H E. J. Biol. Chem., 2014, 289: 3066.
[15] Marshall H E, Hess D T, Stamler J S. Proc. Natl. Acad. Sci.U. S. A., 2004, 101: 8841.
[16] Fuentes-Prior P, Salvesen G S. Biochem. J., 2004, 384: 201.
[17] Chung K K, Thomas B, Li X, Pletnikova O, Troncoso J C, Marsh L, Dawson V L, Dawson T M. Science, 2004, 304: 1328.
[18] Martínez-Ruiz A, Villanueva L, González de Orduña C, López-Ferrer D, Higueras M A, Tarín C, Rodríguez-Crespo I, Vázquez J, Lamas S. Proc. Natl. Acad. Sci.U.S.A., 2005, 102: 8525.
[19] Tian J, Kim S F, Hester L, Snyder S H. Proc. Natl. Acad. Sci. U. S. A., 2008, 105: 10537.
[20] Kim S F, Huri D A, Snyder S H. Science, 2005, 310: 1966.
[21] Jaffrey S R, Snyder S H. Sci. Signal., 2001, 2001: l1.
[22] Basu S, Wang X, Gladwin M T, Kim-Shapiro D B. Methods Enzymol., 2008, 440: 137.
[23] Bechtold E, King S B. Antioxid. Redox Signal., 2012, 17: 981.
[24] Liu M, Hou J, Huang L, Huang X, Heibeck T H, Zhao R, Pasa-Tolic L, Smith R D, Li Y, Fu K, Zhang Z, Hinrichs S H, Ding S J. Anal. Chem., 2010, 82: 7160.
[25] Chen Y J, Ku W C, Lin P Y, Chou H C, Khoo K H, Chen Y J. J. Proteome Res., 2010, 9: 6417.
[26] Puyaubert J, Fares A, Rézé N, Peltier J B, Baudouin E. Plant Sci., 2014, 215/216: 150.
[27] Lee Y I, Giovinazzo D, Kang H C, Lee Y, Jeong J S, Doulias P T, Xie Z, Hu J, Ghasemi M, Ischiropoulos H, Qian J, Zhu H, Blackshaw S, Dawson V L, Dawson T M. Mol. Cell. Proteomics, 2014, 13: 63.
[28] Wang Y T, Piyankarage S C, Williams D L, Thatcher G R J. ACS Chem. Biol., 2014, 9: 821.
[29] Tennyson A G, Lippard S J. Chem. Biol., 2011, 18: 1211.
[30] Kornberg M D, Sen N, Hara M R, Juluri K R, Nguyen J V, Snowman A M, Law L, Hester L D, Snyder S H. Nat. Cell Biol., 2010, 12: 1094.
[31] Wu C, Parrott A M, Fu C, Liu T, Marino S M, Gladyshev V N, Jain M R, Baykal A T, Li Q, Oka S, Sadoshima J, Beuve A, Simmons W J, Li H. Antioxid. Redox Sign., 2011, 15: 2565.
[32] Martínez-Ruiz A, Araújo I M, Izquierdo-Álvarez A, Hernansanz-Agustín P, Lamas S, Serrador J M. Antioxid. Redox Sign., 2012, 19: 1220.
[33] Que L G, Liu L, Yan Y, Whitehead G S, Gavett S H, Schwartz D A, Stamler J S. Science, 2005, 308: 1618.
[34] Foster M W, Hess D T, Stamler J S. Trends Mol. Med., 2009, 15: 391.
[35] Martínez-Ruiz A, Lamas S. Cardiovasc Res., 2004, 62: 43.
[36] 陈畅(Chen C),黄波(Huang B),韩佩韦(Han P W),段绍瑾(Duan S J). 生物化学与生物物理进展(Progress in Biochemistry and Biophysics), 2006, 33(7): 609.
[37] 李一凡(Li Y F),张勇(Zhang Y). 生命的化学(Chemistry of Life), 2006, 26(6): 543.
[38] 张红志(Zhang H Z), 郭小勤(Guo X Q),郝中娜(Hao Z N),陶荣祥(Tao R X). 农业生物技术学报(Journal of Agricultural Biotechnology), 2008, 16(2): 351.
[39] 黄波(Huang B), 陈畅(Chen C). 生物物理学报(Acta Biophysica Sinica), 2012, 28(4): 268.
[40] Pawloski J R, Hess D T, Stamler J S. Nature, 2001, 409: 622.
[41] Gladwin M T, Crawford J H, Patel R P. Free Radic. Biol. Med., 2004, 36: 707.
[42] Lima B, Forrester M T, Hess D T, Stamler J S. Circ. Res., 2010, 106: 633.
[43] Bolotina V M, Najibi S, Palacino J J, Pagano P J, Cohen R A. Nature, 1994, 368: 850.
[44] Lipton A J, Johnson M A, Macdonald T, Lieberman M W, Gozal D, Gaston B. Nature, 2001, 413: 171.
[45] Westenberger U, Thanner S, Ruf H H, Gersonde K, Sutter G, Trentz O. Free Radic. Res. Commun., 1990, 11: 167.
[46] Jourd?euil D, Gray L, Grisham M B. Biochem. Biophys. Res. Commun., 2000, 273: 22.
[47] Milsom A, Jones C, Goodfellow J, Frenneaux M, Peters J, James P. Diabetologia, 2002, 45: 1515.
[48] Foster M W, McMahon T J, Stamler J S. Trends Mol. Med., 2003, 9: 160.
[49] Hao G, Derakhshan B, Shi L, Campagne F, Gross S S. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 1012.
[50] Abrams A J, Farooq A, Wang G. Biochem. (Mosc.), 2011, 50: 3405.
[51] Nakamura T, Lipton S A. Cell Death Differ., 2011, 18: 1478.
[52] Qu J, Nakamura T, Cao G, Holland E A, McKercher S R, Lipton S A. Proc. Natl. Acad. Sci.U.S.A., 2011, 108: 14330.
[53] Hess D T, Stamler J S. J. Biol. Chem., 2012, 287: 4411.
[54] Cho D H, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton S A. Science, 2009, 324: 102.
[55] Graves J D, Krebs E G. Pharmacol. Ther., 1999, 82: 111.
[56] Kim J H, Bugaj L J, Oh Y J, Bivalacqua T J, Ryoo S, Soucy K G, Santhanam L, Webb A, Camara A, Sikka G, Nyhan D, Shoukas A A, Ilies M, Christianson D W, Champion H C, Berkowitz D E. J. Appl. Physiol., 2009, 107: 1249.
[57] Santhanam L, Christianson D W, Nyhan D, Berkowitz D E. J. Appl. Physiol., 2008, 105: 1632.
[58] Wang Z. Cancer Lett., 2012, 320: 123.
[59] Iyer A K V, Rojanasakul Y, Azad N. Nitric Oxide., 2014, 42: 9.
[60] Hara M R, Snyder S H. Cell. Mol. Neurobiol., 2006, 26: 525.
[61] Tsang A H, Chung K K. Biochim. Biophys. Acta (BBA) Mol. Basis Dis., 2009, 1792: 643.
[62] Gu Z, Kaul M, Yan B, Kridel S J, Cui J, Strongin A, Smith J W, Liddington R C, Lipton S A. Science, 2002, 297: 1186.
[63] Li H, Wan A, Xu G, Ye D. Acta Biochim. Biophys. Sin., 2013, 45: 153.
[1] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[2] Shuangyu Zhang, Yunxuan Hu, Cheng Li, Xinhua Xu. Effect of Microbial Iron Redox on Aqueous Arsenic and Antimony Removal [J]. Progress in Chemistry, 2022, 34(4): 870-883.
[3] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[4] Feiran Wang, Fengjing Jiang. Ion-Conducting Membrane for Vanadium Redox Flow Batteries [J]. Progress in Chemistry, 2021, 33(3): 462-470.
[5] Xiangyun Chen, Bing Yuan, Fengli Yu, Congxia Xie, Shitao Yu. Lignin: A Potential Source of Biomass-Based Catalysts [J]. Progress in Chemistry, 2021, 33(2): 303-317.
[6] Hanqiang Zhou, Mingfei Yu, Qiaoshan Chen, Jianchun Wang, Jinhong Bi. Synthesis, Modification of Bismuth Oxyiodide Photocatalyst for Purification of Nitric Oxide [J]. Progress in Chemistry, 2021, 33(12): 2404-2412.
[7] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[8] Xu Guohe, Li Jie, Deng Jinni, Yin Lv, Zheng Zhaohui, Ding Xiaobin. Molecular Shuttles Based on Host-Guest Recognition Driven by External-Stimuli [J]. Progress in Chemistry, 2015, 27(12): 1732-1742.
[9] Ma Jinlian, Ma Chen, Tang Jia, Zhou Shungui, Zhuang Li. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840.
[10] Wang Gang, Chen Jinwei, Zhu Shifu, Zhang Jie, Liu Xiaojiang, Wang Ruilin. Activation of Carbon Electrodes for All-Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2015, 27(10): 1343-1355.
[11] Wang Baiyun, Wang Xiaoyue, Wang Zhiwen, Chen Tao, Zhao Xueming. Redox Cofactor Metabolic Engineering with Escherichia coli [J]. Progress in Chemistry, 2014, 26(09): 1609-1618.
[12] Jing Xiaotong, Yu Fabiao, Chen Lingxin. Fluorescent Probes for Reactive Nitrogen Species [J]. Progress in Chemistry, 2014, 26(05): 866-878.
[13] Wang Gang, Chen Jinwei, Wang Xueqin, Tian Jing, Liu Xiaojiang, Wang Ruilin. Electrolyte for All-Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2013, 25(07): 1102-1112.
[14] Wang Nanfang, Liu Suqin*. Preparation and Properties of Separation Membranes for Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2013, 25(01): 60-68.
[15] Lin Yingwu. Computer-Aided Rational Protein Design: From Myoglobin to Nitric Oxide Reductases [J]. Progress in Chemistry, 2012, 24(05): 784-789.