中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (4): 448-458 DOI: 10.7536/PC141113 Previous Articles   

Special Issue: 酶化学

• Review and evaluation •

Recent Progress in the Application of Nitrilase in the Biocatalytic Synthesis of Pharmaceutical Intermediates

Gong Jinsong, Li Heng, Lu Zhenming, Shi Jinsong, Xu Zhenghong*   

  1. School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21406088, 21206055), the Natural Science Foundation of Jiangsu Province, China (No. BK20140133), and the National Key Technology R&D Program of China for the 12th Five-year Plan (No. 2012AA022204C).
PDF ( 2575 ) Cited
Export

EndNote

Ris

BibTeX

Nitrilase is a crucial enzyme in the field of biocatalysis, which can be used for biosynthesis of various carboxylic acids from corresponding nitriles. This approach is usually employed for preparing pharmaceutical intermediates because of its superior catalytic characteristics including mild reaction conditions, high conversion efficiency, prominent selectivity, and eco-friendly nature. Therefore, the nitrilase-mediated biocatalysis conforms to the development directions of atom economy and green chemistry. It has drawn substantial attention from scholars and entrepreneurs due to its application potential. Several studies have been performed to explore its application in synthesis of several pharmaceutical intermediates and numerous nitrilases have been developed as the industrial catalysts. Whereas, mining and modification of nitrilases are gradually becoming research focuses. Moreover, with the rapid advances of modern molecular biology as well as the advent of the third wave of biocatalysis, gene engineering has become a common approach for constructing recombinant strains. The significant advantages of nitrilase-mediated biocatalysis can be represented in maximum degree through improving the catalytic activity of nitrilase and modifying its catalytic properties, which would lay the foundation for more applications of nitrilases in the future. In this review, the application and development for the synthesis of pharmaceutical intermediates with nitrilase are summarized, as well as unprecedented opportunities and challenges in this field are discussed.

Contents
1 Introduction
2 Research overview of nitrilase
3 Existence range of nitrilase
4 Type of nitrilase catalysts and obtaining manners
4.1 Wild enzyme
4.2 Genetically engineered enzyme
5 The applications in the synthesis of pharmaceutical intermediates
5.1 Picolinic acid
5.2 (R)-Mandelic acid and its derivatives
5.3 Cyanocarboxylic acid
5.4 Pharmaceutical amino acid
5.5 Glycolic acid
6 Conclusion and outlook

CLC Number: 

[1] Debabov V, Yanenko A. Rev. J. Chem., 2011, 1 (4): 385.
[2] Gong J S, Lu Z M, Li H, Shi J S, Zhou Z M, Xu Z H. Microb. Cell Fact., 2012, 11: 142.
[3] Schmid A, Dordick J S, Hauer B, Kiener A, Wubbolts M, Witholt B. Nature, 2001, 409: 258.
[4] Brady D, Beeton A, Zeevaart J, Kgaje C, Rantwijk F, Sheldon R A. Appl. Microbiol. Biotechnol., 2004, 64 (1): 76.
[5] Bornscheuer U T, Huisman G W, Kazlauskas R J, Lutz S, Moore J C, Robins K. Nature, 2012, 485 (7397): 185.
[6] Reetz M T. J. Am. Chem. Soc., 2013, 135 (34): 12480.
[7] Thimann K V, Mahadevan S. Arch Biochem. Biophys., 1964, 105 (1): 133.
[8] Robinson W G, Hook R H. J. Biol. Chem., 1964, 239: 4257.
[9] Kobayashi M, Shimizu S. FEMS Microbiol. Lett., 1994, 120 (3): 217.
[10] Velankar H, Clarke K G, Preez R d, Cowan D A, Burton S G. Trends Biotechnol., 2010, 28 (11): 561.
[11] Wang H, Li G, Li M, Wei D, Wang X. World J. Microbiol. Biotechnol., 2014, 30(1): 245.
[12] Zhu X Y, Gong J S, Li H, Lu Z M, Shi J S, Xu Z H. Chem. Pap., 2014, 68 (6): 739.
[13] Qiu J, Su E, Wang W, Wei D. Catal. Commun., 2014, 51: 19.
[14] Qiu J, Su E, Wang W, Wei D. Tetrahedr. Lett., 2014, 55(8): 448.
[15] Pai O, Banoth L, Ghosh S, Chisti Y, Banerjee U C. Process Biochem., 2014, 49 (4): 655.
[16] Oliveira J, Seleghim M, Porto A. Mar. Biotechnol., 2014, 16 (2): 156.
[17] Liu Z Q, Zhang X H, Xue Y P, Xu M, Zheng Y G. J. Agri. Food Chem., 2014, 62(20): 4685.
[18] Li H, Yang T, Gong J S, Xiong L, Lu Z M, Li H, Shi J S, Xu Z H. Bioprocess Biosyst. Eng., 2014, 38(1): 189.
[19] He Y C, Wu Y D, Pan X H, Ma C L. Biotechnol. Lett., 2014, 36 (2): 341.
[20] Bhatia S K, Mehta P K, Bhatia R K, Bhalla T C. Appl. Microbiol. Biotechnol., 2014, 98 (1): 83.
[21] Zhu X Y, Gong J S, Li H, Lu Z M, Zhou Z M, Shi J S, Xu Z H. J. Mol. Catal. B: Enzym., 2013, 97: 175.
[22] Yoshida T, Mitsukura K, Mizutani T, Nakashima R, Shimizu Y, Kawabata H, Nagasawa T. Biotechnol. Lett., 2013, 35 (5): 685.
[23] Xue Y P, Xu M, Chen H S, Liu Z Q, Wang Y J, Zheng Y G. Org. Process Res. Dev., 2013, 17 (2): 213.
[24] Kumar V, Bhalla T C. Biocatal. Biotransfor., 2013, 31 (1): 42.
[25] Zhang C S, Zhang Z J, Li C X, Yu H L, Zheng G W, Xu J H. Appl. Microbiol. Biotechnol., 2012, 95 (1): 91.
[26] Sharma N, Sharma M, Bhalla T. AMB Express, 2012, 2 (1): 25.
[27] Zhang Z J, Pan J, Liu J F, Xu J H, He Y C, Liu Y Y. J. Biotechnol., 2011, 152 (1/2): 24.
[28] Sharma N, Sharma M, Bhalla T. J. Ind. Microbiol. Biotechnol., 2011, 38 (9): 1235.
[29] Gong J S, Lu Z M, Shi J S, Dou W F, Xu H Y, Zhou Z M, Xu Z H. Appl. Biochem. Biotechnol., 2011, 165 (3/4): 963.
[30] Schreiner U, Hecher B, Obrowsky S, Waich K, Klempier N, Steinkellner G, Gruber K, Rozzell J D, Glieder A, Winkler M. Enzyme Microb. Technol., 2010, 47 (4): 140.
[31] Kumar S, Mohan U, Kamble A L, Pawar S, Banerjee U C. Bioresour. Technol., 2010, 101 (17): 6856.
[32] Rustler S, Stolz A. Appl. Microbiol. Biotechnol., 2007, 75: 899.
[33] 曹明乐 (Cao M L), 姜兴林(Jiang X L), 张海波(Zhang H B), 咸漠(Xian M), 徐鑫(Xu X), 刘炜(Liu W). 生物过程(Bioprocess), 2012, 2: 70.
[34] 赵素娟(Zhao S J), 秦斌(Qin B), 马小双(Ma X S), 陈会来(Chen H L), 贾娴(Jia X), 游松(You S). 沈阳药科大学学报(J. Shenyang Pharm. Univ.), 2011, 28 (3): 226.
[35] Wu Y, Gong J S, Lu Z M, Li H, Zhu X Y, Li H, Shi J S, Xu Z H. J. Basic Microbiol., 2013, 53 (11): 934.
[36] Xue Y P, Xu S Z, Liu Z Q, Zheng Y G, Shen Y C. J. Ind. Microbiol. Biotechnol., 2011, 38 (2): 337.
[37] Oliveira J, Mizuno C, Seleghim M, Javaroti D, Rezende M, Landgraf M, Sette L, Porto A. Mar. Biotechnol., 2013, 15 (1): 97.
[38] 曹明乐 (Cao M L), 姜兴林(Jiang X L), 张海波(Zhang H B), 咸漠(Xian M), 徐鑫(Xu X), 刘炜(Liu W). 应用与环境生物学报(Chin. J. Appl. Environ. Biol.), 2013, 19 (2): 346.
[39] Stalker D M, McBride K E. J. Bacteriol., 1987, 169 (3): 955.
[40] Gong J S, Li H, Zhu X Y, Lu Z M, Wu Y, Shi J S, Xu Z H. PLoS ONE, 2012, 7 (11): e50622.
[41] Gong J S, Lu Z M, Li H, Zhou Z M, Shi J S, Xu Z H. Appl. Microbiol. Biotechnol., 2013, 97 (15): 6603.
[42] DeSantis G, Zhu Z, Greenberg W A, Wong K, Chaplin J, Hanson S R, Farwell B, Nicholson L W, Rand C L, Weiner D P, Robertson D E, Burk M J. J. Am. Chem. Soc., 2002, 124 (31): 9024.
[43] Bayer S, Birkemeyer C, Ballschmiter M. Appl. Microbiol. Biotechnol., 2011, 89 (1): 91.
[44] Qiu J, Su E Z, Wang H L, Cai W W, Wang W, Wei D Z. Appl. Biochem. Biotechnol., 2014, 173(2): 365.
[45] Kaplan O, Bezouška K, Malandra A, Veselá A, Pet D?í D?ková A, Felsberg J, Rinágelová A, K D?en V, Martínková L. Biotechnol. Lett., 2011, 33 (2): 309.
[46] DeSantis G, Wong K, Farwell B, Chatman K, Zhu Z, Tomlinson G, Huang H, Tan X, Bibbs L, Chen P, Kretz K, Burk M J. J. Am. Chem. Soc., 2003, 125 (38): 11476.
[47] Liu Z Q, Baker P J, Cheng F, Xue Y-P, Zheng Y-G, Shen Y-C. PLoS ONE, 2013, 8 (6): e67197.
[48] Kiziak C, Stolz A. Appl. Environ. Microbiol., 2009, 75 (17): 5592.
[49] Pet D?í D?ková A, Sosedov O, Baum S, Stolz A, Martínková L. J. Mol. Catal. B: Enzym., 2012, 77: 74.
[50] 温飞鹏(Wen F P), 张贤土(Zhang X T), 徐金龙(Xu J L), 程美琴(Cheng M Q), 邓小聪(Deng X C), 钟起玲(Zhong Q L). 应用化工(Appl. Chem. Ind.), 2010, 39 (10): 1552.
[51] Mathew C D, Nagasawa T, Kobayashi M, Yamada H. Appl. Environ. Microbiol., 1988, 54 (4): 1030.
[52] Maksimova Y G, Vasilyev D M, Ovechkina G V, Maksimov A Y, Demakov V A. Appl. Biochem. Microbiol., 2013, 49 (4): 347.
[53] Yamamoto K, Oishi K, Fujimatsu I, Komatsu K. Appl. Environ. Microbiol., 1991, 57 (10): 3028.
[54] Banerjee A, Dubey S, Kaul P, Barse B, Piotrowski M, Banerjee U. Mol. Biotechnol., 2009, 41 (1): 35.
[55] Zhang Z J, Pan J, Li C X, Yu H L, Zheng G W, Ju X, Xu J H. Bioprocess Biosyst. Eng., 2014, 37(7): 1241.
[56] Ni K, Wang H, Zhao L, Zhang M, Zhang S, Ren Y, Wei D. J. Biotechnol., 2013, 167 (4): 433.
[57] Ress-Loschke M, Friedrich T, Hauer B, Mattes R, Engels D. US 6869783, 2005.
[58] Chauhan S, Wu S, Blumerman S, Fallon R D, Gavagan J E, DiCosimo R, Payne M S. Appl. Microbiol. Biotechnol., 2003, 61 (2): 118.
[59] Roy B N, Singh G P, Lathi P S, Agrawal M K. Indian J. Chem., 2012, 51: 1470.
[60] Xie Z, Feng J, Garcia E, Bernett M, Yazbeck D, Tao J. J. Mol. Catal. B: Enzym., 2006, 41 (3/4): 75.
[61] 徐美珍(Xu M Z), 任杰(Ren J), 龚劲松(Gong J S), 董文玥(Dong W Y), 吴洽庆(Wu Q Q), 许正宏(Xu Z H), 朱敦明(Zhu D M). 生物工程学报(Chin. J. Biotechnol.), 2013, 29 (1): 31.
[62] Zhu D, Mukherjee C, Biehl E R, Hua L. Adv. Synth. Catal., 2007, 349 (10): 1667.
[63] Alonso F O M, Oestreicher E G, Antunes O A C. Braz J Chem. Eng., 2008, 25 (1): 1.
[64] Jin L Q, Li Z T, Liu Z Q, Zheng Y G, Shen Y C. J. Ind. Microbiol. Biotechnol., 2014, 41(10): 1479.
[65] Liang L Y, Zheng Y G, Shen Y C. Process Biochem., 2008, 43 (7): 758.
[66] Panova A, Mersinger L J, Liu Q, Foo T, Roe D C, Spillan W L, Sigmund A E, Ben-Bassat A, Wagner L W, O’Keefe D P, Wu S, Petrillo K L, Payne M S, Breske S T, Gallagher F G, DiCosimo R. Adv. Synth. Catal., 2007, 349 (8/9): 1462.
[67] He Y C, Xu J H, Su J H, Zhou L. Appl. Biochem. Biotechnol., 2010, 160 (5): 1428.
[68] Wu S, Fogiel A J, Petrillo K L, Jackson R E, Parker K N, DiCosimo R, Ben-Bassat A, O’Keefe D P, Payne M S. Biotechnol. Bioeng., 2008, 99 (3): 717.
[69] Zaks A. Curr. Opin. Chem. Biol., 2001, 5 (2):
[70] Vejvoda V, Kubác D, Davidová A, Kaplan O, Sulc M, Sveda O, Chaloupková R, Martínková L. Process Biochem., 2010, 45 (7): 1115.
[1] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[2] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[3] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.
[4] Xixi Wang, Lu Dai, Suyun Jie, Bogeng Li. Synthesis and Application in the Polycondensation of Long-Chain Aliphatic Dicarboxylic Acids [J]. Progress in Chemistry, 2019, 31(1): 70-82.
[5] He Huang, Chuanjun Song, Junbiao Chang. Acylation Using Carboxylic Acids as Acylating Agents: Applications in Organic Synthesis [J]. Progress in Chemistry, 2019, 31(1): 1-9.
[6] Jiqian Wang*, Hongyu Yan, Jie Li, Liyan Zhang, Yurong Zhao, Hai Xu*. Artificial Metalloenzymes Based on Peptide Self-Assembly [J]. Progress in Chemistry, 2018, 30(8): 1121-1132.
[7] Guoqiang Wang, Min Jiang*, Qiang Zhang, Rui Wang, Xiaoling Qu, Guangyuan Zhou*. Polyesters Containing Furan Rings Based on Renewable Resources [J]. Progress in Chemistry, 2018, 30(6): 719-736.
[8] Weijun Huang, Ning Zhu*, Zheng Fang, Kai Guo*. Synthesis of Biobased Furan-Containing Polyamides [J]. Progress in Chemistry, 2018, 30(12): 1836-1843.
[9] Dongya Bai, Junyao He, Bin Ouyang, Jin Huang, Pu Wang. Biocatalytic Asymmetric Synthesis of Chiral Aryl Alcohols [J]. Progress in Chemistry, 2017, 29(5): 491-501.
[10] Sun Jia, Wang Pu, Zhang Pengpeng, Huang Jin. Application of Glycerol in Microbial Biosynthesis and Biocatalysis [J]. Progress in Chemistry, 2016, 28(9): 1426-1434.
[11] Zhao Yanan, Wang Mengfan, Qi Wei, Su Rongxin, He Zhimin. Supramolecular Artificial Enzyme Based on Assembling Peptide Gel [J]. Progress in Chemistry, 2016, 28(11): 1664-1671.
[12] Feng Xudong, Li Chun. The Improvement of Enzyme Properties and Its Catalytic Engineering Strategy [J]. Progress in Chemistry, 2015, 27(11): 1649-1657.
[13] Shen Gangyi, Yu Wanting, Liu Meirong, Cui Xun. Preparation and Application of Immobilized Enzyme Micro-Reactor [J]. Progress in Chemistry, 2013, 25(07): 1198-1207.
[14] Yan Fanyong, Li Chuying, Liang Xiaole, Dai Linfeng, Wang Meng, Chen Li*. Different Catalyst Systems for Baeyer-Villiger Reaction [J]. Progress in Chemistry, 2013, 25(06): 900-914.
[15] Liu Xiang, Pan Zhengguang, Xu Jianhe. Asymmetric Synthesis of Chiral Aryl Vicinal Diols [J]. Progress in Chemistry, 2011, 23(5): 903-913.