中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (5): 482-491 DOI: 10.7536/PC141103 Previous Articles   Next Articles

• Review and evaluation •

Transport and Diffusion of Water, Alcohols and Their Mixtures Through Nano-Pore Materials

Xu Jian, Fan Jianfen*, Yan Xiliang, Yu Yi, Zhang Mingming   

  1. College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21173154) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
PDF ( 936 ) Cited
Export

EndNote

Ris

BibTeX

With the rapid development of computer science, theoretical computation, especially molecular dynamic simulation plays a unique role in the investigation of confined fluids. This review surveys the progress in the study of the transport and diffusion of water, alcohols and their mixture in nano-pore materials, including the behavior of pure water, methanol and ethanol, and the absorption and separation of methanol/water, ethanol/water mixtures, etc., through carbon nanotubes and zeolites. The influences of system temperature, molecular concentration and the structural property of nano-pore materials on the transport and diffusion of water and alcohols are also summarized.

Contents
1 Introduction
2 Outline of molecular simulation
3 Transport and diffusion of pure water in nano-pore materials
3.1 Natural biological water channel
3.2 Synthetic nanoscale water channel
4 Transport and diffusion of pure alcohols in nano-pore materials
4.1 Methanol
4.2 Ethanol
4.3 Other alcohols
5 Transport and diffusion of alcohols/water mixtures in nano-pore materials
5.1 Methanol/water mixture
5.2 Ethanol/water mixture
6 Transport and diffusion of alcohol mixtures in nano-pore materials
7 Conclusion

CLC Number: 

[1] Preston G M, Agre P. Proc. Natl. Acad. Sci. USA, 1991, 88(24): 11110.
[2] Preston G M, Carroll T P, Guno W B, Agre P. Science, 1992, 256: 385.
[3] Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B, Engel A, Fujiyoshi Y. Nature, 2000, 407: 599.
[4] De Groot B L, Engel A, Grubmüüller H. J. Mol. Biol., 2003, 325: 485.
[5] Sui H, Han B G, Lee J K, Walian P, Jap B K. Nature, 2001, 414: 872.
[6] Carloni P, Vidossich P, Cascella M. Protein, 2004, 55: 924.
[7] Trnroth-Horesefield S, Wang Y, Hedfalk K. Nature, 2006, 439: 688.
[8] Levitt D G, Elias S R, Hautman J M. Biochim. Biophys. Acta, 1978, 512: 436.
[9] De Groot B L, Tieleman D P, Pohl P. Biophys. J., 2002, 82: 2934.
[10] Iijima S, Chihashi T. Nature, 1993, 363: 603.
[11] Noon W H, Ausman K D, Smalley R E, Ma J P. Chem. Phys. Lett., 2002, 355: 445.
[12] Mashl R J, Joseph S, Aluru N R, Jakobsson E. Nano Lett., 2003, 3: 589.
[13] Koga K, Gao G T, Tanaka H, Zeng X C. Nature, 2001, 412: 802.
[14] Bai J, Wang J, Zeng X C. Proc. Natl. Acad. Sci., 2006, 103: 19664.
[15] De Souza N R, Kolesnikov A I, Burnham C J, Loong C K. J. Condes. Matter. Phys., 2006, 18: S2321.
[16] Hummer G, Rasaiah J C, Noworyta J P. Nature, 2001, 414: 188.
[17] Berezhkovskii A, Hummer G. Phys. Rev. Lett., 2002, 89, 064503.
[18] Vasenkov S, Karger J. Phys. Rev. E, 2002, 66: 052601.
[19] Striolo A. Nano Lett., 2006, 6: 633.
[20] Byl O, Liu J C, Wang Y, Yim W L, Johnson J K, Yates J T. J. Am. Chem. Soc., 2006, 128: 12090.
[21] Huang L L, Zhang L Z, Shao Q, Wang J, Lu L H, Lu X H, Jiang S Y, Shen W F. J. Phys. Chem. B, 2006, 110: 25761.
[22] Huang L L, Shao Q, Lu L H, Lu X H, Zhang L Z, Wang J, Jiang S Y. Phys. Chem. Chem. Phys., 2006, 8: 3836.
[23] Zhu Y D, Wei M J, Shao Q, Lu L H, Lu X H, Shen W F. J. Phys. Chem. C, 2009, 113: 882.
[24] Gordillo M C, Marti J. Chem. Phys. Lett., 2000, 329: 341.
[25] Hanasaki I, Nakatani A J. Chem. Phys., 2006, 124: 174714.
[26] Noon W H, Ausman K D, Smalley R E, Ma J P. Chem. Phys. Lett., 2002, 355: 445.
[27] Wan R Z, Li J Y, Lu H J, Fang H P. J. Am. Chem. Soc., 2005, 127: 7166.
[28] Wang S, Lu H J, Tu Y S, Wang C L, Fang H P. Chin. Phys. Lett., 2009, 26: 068702.
[29] Li J Y, Gong X J, Lu H J, Li D, Fang H P, Zhou R H. Proc. Natl. Acad. Sci., 2007, 104: 3687.
[30] Gong X J, Li J Y, Lu H J, Wang R Z, Li J C, Hu J, Fang H P. Nat. Nanotechnol., 2007, 2: 709.
[31] Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G, Zettl A. Science, 1995, 269: 966.
[32] Won C Y, Aluru N R. J. Phys. Chem. C, 2008, 112: 1812.
[33] Zang J, Konduri S, Nair S, Sholl D S. J.Am. Chem. Soc., 2009, 3(6): 1548.
[34] Engels M, Bashford D, Ghadiri M R. J. Am. Chem. Soc., 1995, 117(36): 9151.
[35] Tarek M, Maigret B, Chipot C. Biophys. J., 2003, 85(4): 2287.
[36] Zhu J C, Cheng J, Liao Z X, Lai Z H, Liu B. J. Comput. Aided. Mol. Des., 2008, 22: 773.
[37] Liu J, Fan J F, Tang M, Zhou W Q. J. Phys. Chem. A, 2010, 114: 2376.
[38] Liu J, Fan J F, Tang M, Zhou W Q. J. Phys. Chem. B, 2010, 114: 12183.
[39] Liu J, Fan J F, Tang M, Zhou W Q. J. Chem. Inf. Model., 2012, 52: 2132.
[40] Liu D Y, Fan J F, Song X Z, Li R, Li H. Comput. Mater. Sci., 2013, 78: 47.
[41] Li H, Fan J F, Li R, Yan X L, Yu Y. J. Mol. Model, 2014, 20: 2370.
[42] Yamaguchi T, Hidaka K, Soper A K. Mol. Phys., 1999, 96: 1159.
[43] Adya A K, Bianchi L, Wormald C J. J. Chem. Phys., 2000, 112: 4231.
[44] Narten A H, Habenschuss A. J. Chem. Phys., 1982, 77: 2144.
[45] Jorgensen W L. J. Chem. Phys., 1986, 90: 1276.
[46] Jorgensen W L, Briggs J M, Conteras M L. J. Phys. Chem., 1990, 94: 1683.
[47] Kosztolányi T, Bakó I, Pálinkás G. J. Chem. Phys., 2003, 118: 4546.
[48] Morishige K, Kawano K. J. Chem. Phys., 2000, 112: 11023.
[49] Morineau D, Guégan R, Xia Y D, Alba-Simionesco C. J. Chem. Phys., 2004, 121: 1466.
[50] Guegan R, Morineau D, Alba-Simionesco C. J. Chem. Phys., 2005, 317: 236.
[51] Sliwinska-Bartkowiak M, Dudziak G, Sikorski R, Gras R, Gubbins K E, Radhakrishnan R. Phys. Chem. Chem. Phys., 2001, 3: 1179.
[52] Zhang Q X, Zheng J, Shevade A, Zhang L Z, Gehrke S H, Heffelfinger G S, Jiang S Y. J. Chem. Phys., 2002, 117: 808.
[53] Shah R, Gale J D, Payne M C. J. Phys. Chem., 1996, 100: 11688.
[54] Haase F, Sauer J. Micropor. Mesopor. Mater., 2000, 379: 35.
[55] Stich I, Gale J D, Terakura K, Payne M C. Chem. Phys. Lett., 1998, 283: 402.
[56] Plant D F, Maurin G, Bell R G. J. Phys. Chem. B, 2006, 110: 15926.
[57] Nanok T, Vasenkov S, Keil F J, Fritzsche S. Microporous Mesoporous Mater., 2010, 127: 176.
[58] Plant D F, Maurin G, Bell R G. J. Phys. Chem. B, 2007, 111: 2836.
[59] Dicks A L. J. Power Sources, 2006, 156: 128.
[60] Burghaus U, Bye D, Cosert K, Goering J, Guerard A, Kadossov E, Lee E, Nadoyama Y, Richter N, Sxhaefer E. Chem. Phys. Lett., 2007, 442: 344.
[61] Ellison M D, Morris S T, Sender M R, Brigham J, Padgett N E. J. Phys. Chem. C, 2007, 111: 18127.
[62] Tang Z R. Physica B, 2010, 405: 770.
[63] Ganji M D, Goodarzi M, Nashtahosseini M, Mommadi-nejad A. Commun. Theor. Phys., 2011, 55: 365.
[64] Rebeca G F, Juan R G, Marco D A, Modesto O. J. Am. Chem. Soc., 2009, 131: 15678.
[65] Saiz L, Padro J A, Guardia E. J. Phys. Chem. B, 1997, 101: 78.
[66] Wensink E J W, Hoffmann A C, van Maaren P J, van der Spoel D. J. Chem. Phys., 2003, 119: 7308.
[67] Jorgensen W L, Maxwell D S, Tirado-Rives J. J. Am. Chem. Soc., 1996, 118: 11225.
[68] Stewart E, Shields R L, Taylor R S. J. Phys. Chem. B, 2003, 107: 2333.
[69] Van de Spoel D, van Maaren P J, Larsson P, Timneanu N. J. Phys. Chem. B, 2006, 110: 4393.
[70] Bertolini D, Cassettari M, Ferrario M. Adv. Chem. Phys., 1985, 62: 277.
[71] Geiger A, Mausbach P. Springer Netherlands, 1991, 1713.
[72] Haughney M, Ferrario M, Mcdonald I R. J. Phys. Chem., 1987, 91(19): 4934.
[73] Narten A H, Habenschuss A. J. Chem. Phys., 1984, 80(7): 3387.
[74] Jorgensen W L. J. Am. Chem. Soc., 1981, 103(2): 341.
[75] Jorgensen W L. J. Am. Chem. Soc., 1981, 103(2): 345.
[76] Jorgensen W L. J. Am. Chem. Soc., 1982, 104(2): 3738.
[77] Sarkar S, Joarder R N. J. Chem. Phys., 1994, 100(7): 5118.
[78] Zhou Q L, Zhou Q, Forman S A. Biochem., 2000, 39(48): 14920.
[79] Ren H, Zhao Y, Dwyer D S, Peoples R W. J. Biol. Chem., 2012, 287(33): 27302.
[80] Ohkubo T, Kaneko K. Colloid Surf. A, 2001, 187: 177.
[81] 邵庆(Shao Q), 黄亮亮(Huang L L), 陆小华(Lu X H), 吕玲红(Lv L H), 朱育丹(Zhu Y D), 沈文枫(Shen W F). 化学学报(Acta Chimica Sinica), 2007, 65(20): 2217.
[82] Shao Q, Huang L L, Zhou J, Lu L H, Zhang L Z, Lu X H, Jiang S Y, Gubbins K E, Zhu Y D, Shen W F. J. Phys. Chem. C, 2007, 111: 15677.
[83] Wesslein M, Heintz A, Reinhardt G A, Lichtenthaler R N. Pervaporation Process Chem. Ind., Bakish Materials Corp., 1988. p172.
[84] Liu Q, Noble R D, Falconer J L, Funke H H. J. Membrane Sci., 1996, 117: 163.
[85] Shevade A V, Jiang S Y, Gubbins K E. J. Chem. Phys., 2000, 113: 6933.
[86] Yang J Z, Chen Y, Zhu A M, Liu Q L, Wu J Y. J. Membrane Sci., 2008, 318: 327.
[87] Wu J Y, Liu Q L, Xiong Y, Zhu A M, Chen Y. J. Phys. Chem. B, 2009, 113(13): 4267.
[88] Csányi É, Kristóf T, Lendvay G. J. Phys. Chem. C, 2009, 113: 12225.
[89] Lee K, Lee J, Kim S, Ju B. Carbon, 2011, 49: 787.
[90] Liu Y, Consta S, Goddard W A. J. Nanosci. Nanotechnol., 2010, 10: 3834.
[91] Zheng J M, Lennon E, Tsao H K, Sheng Y J, Jiang S Y. J. Chem. Phys., 2005, 122: 214702.
[92] Yang L, Gao Y Q. J. Am. Chem. Soc., 2010, 132: 842.
[93] Zhao W H, Shang B, Du S P, Yuan L F, Yang J L, Zeng X C. J. Chem. Phys., 2012, 137: 034501.
[94] Hwang S, Shao Q, Williams H, Hilty C, Gao Y Q. J. Phys. Chem. B, 2011, 115: 6653.
[95] 闵恩泽(Min E Z). 化学进展(Prog.Chem.), 2006, 18: 131.
[96] Yang Y C, Min Q, Yang G R, Wang Y D, Hai Y. Petrochem. Technol., 1994, 23: 3568.
[97] Nomura M, Yamaguchi T, Nakao S. J. Membr. Sci., 1998, 144: 161.
[98] Takaba H, Kayama A, Nakao S. J. Phys. Chem. B, 2000, 104: 6353.
[99] Jia W, Murad S. Mol. Phys., 2006, 104: 3033.
[100] Lu L, Shao Q, Huang L L, Lu X H. Fluid Phase Equilibr., 2007, 261(1): 191.
[101] Kristof T, Csanyi E, Rutkai G, Merenyi L. Mol. Simul., 2006, 32: 869.
[102] Rutkai G, Csányi E, Kristóf T. Micropor. Mesopor. Mater., 2008, 114: 455.
[103] Furukawa S, Goda K, Zhang Y, Nitta T. J. Chem. Eng. Jpn., 2004, 37: 67.
[104] Yang J Z, Liu Q L, Wang H T. J. Mem. Sci., 2007, 291: 1.
[105] Krishna R, van Baten J M. Langumir, 2010, 26(13): 10854.
[106] Guo S Y, Yu C, Gu X, Jin W Q, Zhong J, Chen C L. J. Mem. Sci., 2011, 376(1): 40.
[107] Krishna R, van Baten J M. J. Mem. Sci., 2010, 360: 476.
[108] Du S P, Zhao W H, Yuan L F. Chin. J. Chem. Phys., 2012, 25: 410.
[1] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[2] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[3] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[4] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[5] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[6] Lusha Gao, Jingwen Li, Hui Zong, Qianyu Liu, Fansheng Hu, Jiesheng Chen. Condensed Matter and Chemical Reactions in Hydrothermal Systems [J]. Progress in Chemistry, 2022, 34(7): 1492-1508.
[7] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[8] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[9] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[10] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[11] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[12] Shixiang Xue, Pan Wu, Liang Zhao, Yanli Nan, Wanying Lei. The Application of CoFe Layered Double Hydroxide-Based Materials in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(12): 2686-2699.
[13] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[14] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[15] Haodong Ji, Juanjuan Qi, Maosheng Zheng, Chenyuan Dang, Long Chen, Taobo Huang, Wen Liu. Application of Nanotechnology for Virus Inactivation in Water:Implications for Transmission-Blocking of the Novel Coronavirus SARS-CoV-2 [J]. Progress in Chemistry, 2022, 34(1): 207-226.