中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (5): 601-613 DOI: 10.7536/PC141042 Previous Articles   Next Articles

• Review and evaluation •

Applications of Superparamagnetic Fe3O4 Nanoparticles in Magnetic Resonance Imaging

Liu Tianhui, Chang Gang, Cao Ruijun, Meng Lingjie*   

  1. Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21174087, 21474079), the Program for New Century Excellent Talents in University (No.NCET-13-0453),the Postdoctoral Fund of China (No.2013M540738, 2014T70909), and the Fundamental Funds for the Central Universities (No.08142027, 08143101).
PDF ( 2255 ) Cited
Export

EndNote

Ris

BibTeX

Fe3O4 nanomaterials have attracted tremendous attention in the field of magnetic resonance imaging (MRI) because of their low cost, good biocompatibility, favorable superparamagnetic properties. This article focuses on the controlled preparation methods of superparamagnetic Fe3O4 nanoparticles, and provides an in-depth discussion of the key factors and their influence rules for particle size, crystallinity and magnetic properties. The current status of available methodologies and mechanisms for the assembly and surface modification of Fe3O4 nanoparticles are highlighted to generate high performance and multifunction. We also systematically summarize the effect of particle size, morphology and surface properties on the magnetic and toxic properties of Fe3O4 nanoparticles. Finally, the future opportunities and challenges of Fe3O4 nanomaterials used as MRI contrast agents are addressed to our understanding.

Contents
1 Introduction
2 Controllable preparation of Fe3O4 nanoparticles
2.1 Thermal decomposition
2.2 Coprecipitation
2.3 Solvothermal
2.4 Sol-gel
2.5 Microemulsion
2.6 Sonochemical
3 Assembly of Fe3O4 nanoparticles
3.1 Zero-dimensional sphere
3.2 One-dimensional nanochain
3.3 Multidimensional assembly
4 Surface functionalization of Fe3O4 nanoparticles
4.1 Modified by SiO2
4.2 Modified by polymer
4.3 Multifunctional modification
5 Toxicity
6 MRI applications
6.1 Cell imaging
6.2 Tissue/organ imaging
7 Conclusion

CLC Number: 

[1] O'Neill C, Kurgansky M, Kaiser J, Lau W. PAIN Physician, 2008, 11:311.
[2] Kim C K, Park B K, Lee H M, Kim S S, Kim E J. Am. J. Roentgenol., 2008, 190:1180.
[3] Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V, Muller R N. Chem. Rev., 2008, 108:2064.
[4] Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V, Muller R N. Chem. Rev., 2008, 108:2064.
[5] Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca E A, Basilion J P. Nat. Med., 2000, 6:351.
[6] Xie J, Chen K, Lee H Y, Xu C J, Hsu A R, Peng S, Chen X Y, Sun S H. J. Am. Chem. Soc., 2008, 130:7542.
[7] Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Adv. Mater., 2010, 22:2729.
[8] Yang C, Wu J, Hou Y. Chem. Commun., 2011, 47:5130.
[9] Bateer B, Qu Y, Tian C, Du S, Ren Z, Wang R, Pan K, Fu H. Mater. Res. Bull., 2014, 56:34.
[10] Abdulwahab K, Malik M A, O'Brien P, Govender K, Muryn C A, Timco G A, Tuna F, Winpenny R E P. Dalton Trans., 2012, 42:196.
[11] Bateer B, Tian C, Qu Y, Du S, Tan T, Wang R, Tian G, Fu H. CrystEngComm., 2013, 15:3366.
[12] Xu Z, Shen C, Hou Y, Gao H, Sun S. Chem. Mater., 2009, 21:1778.
[13] Roca A G, Morales M P, O Grady K, Serna C J. Nanotechnology, 2006, 17:2783.
[14] Chen Z P, Zhang Y, Zhang S, Xia J G, Liu J W, Xu K, Gu N. Colloids Surf. A, 2008, 316:210.
[15] Shavel A, Rodríguez-González B, Spasova M, Farle M, Liz-Marzán L M. Adv. Funct. Mater., 2007, 17:3870.
[16] Asuha S, Wan H L, Zhao S, Deligeer W, Wu H Y, Song L, Tegus O. Ceram Int., 2012, 38:6579.
[17] Jiang F, Li X, Zhu Y, Tang Z. Physica B, 2014, 443:1.
[18] Petcharoen K, Sirivat A. Mater. Sci. Eng. B-Solid, 2012, 177:421.
[19] Shen L, Qiao Y, Guo Y, Meng S, Yang G, Wu M, Zhao J. Ceram Int., 2014, 40:1519.
[20] Jiang W, Yang H C, Yang S Y, Horng H E, Hung J C, Chen Y C, Hong C. J. Magn. Magn. Mater., 2004, 283:210.
[21] Mahdavi M, Ahmad M, Haron M, Namvar F, Nadi B, Rahman M, Amin J. Molecules, 2013, 18:7533.
[22] Ramalakshmi M, Shakkthivel P, Sundrarajan M, Chen S M. Mater. Res. Bull., 2013, 48:2758.
[23] Zeng Y, Hao R, Xing B, Hou Y, Xu Z. Chem. Commun., 2010, 46:3920.
[24] Cheng W, Tang K, Qi Y, Sheng J, Liu Z. J. Mater. Chem., 2010, 20:1799.
[25] Wang Y, Zhu Q, Tao L. CrystEngComm., 2011, 13:4652.
[26] Xuan S, Wang Y J, Yu J C, Leung K C F. Chem. Mater., 2009, 21:5079.
[27] Zhang D, Zhang X, Ni X, Song J, Zheng H. Cryst. Growth Des., 2007, 7:2117.
[28] Gao S, Shi Y, Zhang S, Jiang K, Yang S, Li Z, Takayama-Muromachi E. J. Phys. Chem. C, 2008, 112:10398.
[29] Chen J, Wang F, Huang K, Liu Y, Liu S. J. Alloy Compd., 2009, 475:898.
[30] Li C Y, Wei Y J, Liivat A, Zhu Y H, Zhu J F. Mater. Lett., 2013, 107:23.
[31] Tadi? M, Kusigerski V, Markovi? D, Panjan M, Miloševi? I, Spasojevi? V. J. Alloy Compd., 2012, 525:28.
[32] Lemine O M, Omri K, Zhang B, El Mir L, Sajieddine M, Alyamani A, Bououdina M. Superlattices Microstruct., 2012, 52:793.
[33] Lu T, Wang J, Yin J, Wang A, Wang X, Zhang T. Colloids Surf. A, 2013, 436:675.
[34] Maleki H, Simchi A, Imani M, Costa B F O. J. Magn. Magn. Mater., 2012, 324:3997.
[35] Kim E H, Lee H S, Kwak B K, Kim B K. J. Magn. Magn. Mater., 2005, 289:328.
[36] Abbas M, Takahashi M, Kim C. J. Nanopart. Res., 2013, 15.
[37] Jun Y, Lee J, Cheon J. Angew. Chem. Int. Ed., 2008, 47:5122.
[38] Hu Y, He L, Yin Y. Angew. Chem. Int. Ed., 2011, 50:3747.
[39] Zhou J, Meng L, Feng X, Zhang X, Lu Q. Angew. Chem. Int. Ed., 2010, 49:8476.
[40] Zhang W, Shen F L, Hong R Y. Particuology, 2011, 9:179.
[41] Lu B Q, Zhu Y J, Zhao X Y, Cheng G F, Ruan Y J. Mater. Res. Bull., 2013, 48:895.
[42] Zhu Y, Zhao W, Chen H, Shi J. J. Phys. Chem. C, 2007, 111:5281.
[43] Yu D, Sun X, Zou J, Wang Z, Wang F, Tang K. J. Phys. Chem. B, 2006, 110:21667.
[44] Jia B, Gao L. J. Phys. Chem. C, 2008, 112:666.
[45] Ding Y, Hu Y, Jiang X, Zhang L, Yang C. Angew. Chem. Int. Ed., 2004, 43:6369.
[46] Zhang Y, Sun L, Zhai Y, Huang H B, Huang R S, Lu H X, Zhai H R. J. Appl. Phys., 2007, 101.
[47] Wang H, Chen Q, Sun L, Qi H, Yang X, Zhou S, Xiong J. Langmuir, 2009, 25:7135.
[48] Ma M, Zhang Q, Dou J, Zhang H, Geng W, Yin D, Chen S. Colloid. Polym. Sci., 2012, 290:1207.
[49] Kim Y, Choi Y S, Lee H J, Yoon H, Kim Y K, Oh M. Chem. Commun., 2014, 50:7617.
[50] Xiong Y, Ye J, Gu X, Chen Q W. J. Phys. Chem. C, 2007, 111:6998.
[51] Xi G, Wang C, Wang X. Eur. J. Inorg. Chem., 2008, 2008:425.
[52] Gao Q, Zhao A, Gan Z, Tao W, Li D, Zhang M, Guo H, Wang D, Sun H, Mao R, Liu E. CrystEngComm., 2012, 14:4834.
[53] Zhong L S, Hu J S, Liang H P, Cao A M, Song W G, Wan L J. Adv. Mater., 2006, 18:2426.
[54] Zhang Z J, Chen X Y, Wang B N, Shi C W. J. Cryst. Growth, 2008, 310:5453.
[55] Liu X, Duan X, Qin Q, Wang Q, Zheng W. CrystEngComm., 2013, 15:3284.
[56] Reddy L H, Arias J L, Nicolas J, Couvreur P. Chem. Rev., 2012, 112:5818.
[57] Lu Z, Dai J, Song X, Wang G, Yang W. Colloid Surf. A, 2008, 317:450.
[58] Hui C, Shen C, Tian J, Bao L, Ding H, Li C, Tian Y, Shi X, Gao H. Nanoscale, 2011, 3:701.
[59] Lu Y, Yin Y, Mayers B T, Xia Y. Nano Lett., 2002, 2:183.
[60] Arsalani N. Express Polym. Lett., 2010, 4:329.
[61] Wydra R J, Kruse A M, Bae Y, Anderson K W, Hilt J Z. Mater. Sci. Eng. C-Mater., 2013, 33:4660.
[62] Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X. Biomaterials, 2013, 34:8382.
[63] Hong R Y, Feng B, Chen L L, Liu G H, Li H Z, Zheng Y, Wei D G. Biochem. Eng. J., 2008, 42:290.
[64] Easo S L, Mohanan P V. Carbohydr. Polym., 2013, 92:726.
[65] Yu C, Gou L, Zhou X, Bao N, Gu H. Electrochim. Acta, 2011, 56:9056.
[66] Javid A, Ahmadian S, Saboury A A, Kalantar S M, Rezaei-Zarchi S. Chem. Biol. Drug Des., 2013, 82:296.
[67] Zhou T, Wu B, Xing D. J. Mater. Chem., 2011, 22:470.
[68] Hu Y, Meng L, Niu L, Lu Q. ACS Appl. Mater. Interfaces, 2013, 5:4586.
[69] Xu Z, Hou Y, Sun S. J. Am. Chem. Soc., 2007, 129:8698.
[70] Qi D, Zhang H, Tang J, Deng C, Zhang X. J. Phys. Chem. C, 2010, 114:9221.
[71] Sun L, Zhang C, Chen L, Liu J, Jin H, Xu H, Ding L. Anal. Chim. Acta, 2009, 638:162.
[72] Fan Q, Neoh K, Kang E, Shuter B, Wang S. Biomaterials, 2007, 28:5426.
[73] Hong S C, Lee J H, Lee J, Kim H Y, Park J Y, Cho J, Lee J, Han D W. Int. J. Nanomed., 2011, 6:3219.
[74] Karlsson H L, Gustafsson J, Cronholm P, Mller L. Toxicol. Lett., 2009, 188:112.
[75] Katsnelson B A, Degtyareva T D, Minigalieva I I, Privalova L I, Kuzmin S V, Yeremenko O S, Kireyeva E P, Sutunkova M P, Valamina I I, Khodos M Y, Kozitsina A N, Shur V Y, Vazhenin V A, Potapov A P, Morozova M V. Int. J. Toxicol., 2011, 30:59.
[76] Chen W, Yi P, Zhang Y, Zhang L, Deng Z, Zhang Z. ACS Appl. Mater. Interfaces, 2011, 3:4085.
[77] Yi P, Chen G, Zhang H, Tian F, Tan B, Dai J, Wang Q, Deng Z. Biomaterials, 2013, 34:3010.
[78] Sun P, Zhang H, Liu C, Fang J, Wang M, Chen J, Zhang J, Mao C, Xu S. Langmuir, 2010, 26:1278.
[79] Wang L, Neoh K, Kang E, Shuter B, Wang S. Biomaterials, 2010, 31:3502.
[80] Patel D, Kell A, Simard B, Xiang B, Lin H Y, Tian G. Biomaterials, 2011, 32:1167.
[81] Gao G H, Lee J W, Nguyen M K, Im G H, Yang J, Heo H, Jeon P, Park T G, Lee J H, Lee D S. J. Controlled Release, 2011, 155:11.
[82] Im G H, Kim S M, Lee D, Lee W J, Lee J H, Lee I S. Biomaterials, 2013, 34:2069.
[83] Kokuryo D, Anraku Y, Kishimura A, Tanaka S, Kano M R, Kershaw J, Nishiyama N, Saga T, Aoki I, Kataoka K. J. Controlled Release, 2013, 169:220.
[84] Lee H, Yu M K, Park S, Moon S, Min J J, Jeong Y Y, Kang H, Jon S. J. Am. Chem. Soc., 2007, 129:12739.
[85] Niu C, Wang Z, Lu G, Krupka T M, Sun Y, You Y, Song W, Ran H, Li P, Zheng Y. Biomaterials, 2013, 34:2307.
[86] Zhou J, Guo D, Zhang Y, Wu W, Ran H, Wang Z. ACS Appl. Mater. Interfaces, 2014, 6:5566.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[5] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[6] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[7] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[8] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[9] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[10] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[11] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[12] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[13] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[14] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[15] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.