中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (4): 395-403 DOI: 10.7536/PC141040 Previous Articles   Next Articles

• Review and evaluation •

Effects of Conducting Channels Microstructure in Proton Exchange Membrane on the Performance of Fuel Cells

Liu Xu1, Wu Juntao2, Huo Jiangbei1, Meng Xiaoyu1, Cui Lishan1, Zhou Qiong*1   

  1. 1. College of Science, China University of Petroleum (Beijing), Beijing 102249, China;
    2. Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratry of Bio-inspired Energy Materials and Devices, School of Chemistry and Environment, Beihang University, Beijing 100191, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51373007, 51003004, 51303211), and the National Basic Research Program of China (No. 2010CB934700).
PDF ( 2335 ) Cited
Export

EndNote

Ris

BibTeX

Proton exchange membrane fuel cell has been identified as the most promising power source for portable electronic apparatus and automobile power devices due to its unique advantages, such as high conversion efficiencies, high power density and fast start-ups at room temperature. The proton conducting channels in proton exchange membranes are attracting more and more attention, because they have significant influence on the proton conductivity of proton exchange membranes. The construction of well-aligned proton conducting channels in the membrane can not only achieve higher proton conductivity, but also improve the methanol barrier property, thermal stability and chemical stability of proton exchange membranes. The research progress of the proton conducting channels is reviewed in this paper, and the well-aligned proton conducting channels obtained by controlling the morphology of the membranes and their improvements on the performance of the proton exchange membrane fuel cells are also discussed. The present review attempts to summarize the effects of different types of morphologies and the resulting aligned proton conducting channels on the properties of proton exchange membranes as well as the performance of proton exchange membrane fuel cells. In the end, the outlook for future development of proton conducting channels in proton exchange membranes is also prospected.

Contents
1 Introduction
2 Proton conducting channels in PEM
3 Fabrication of well-aligned proton conducting channels and their effects on the performance of PEMFCs
3.1 Spherical microstructures
3.2 Cylindrical microstructures
3.3 Co-continuous microstructures
3.4 Lamellar microstructures
4 Conclusion

CLC Number: 

[1] 衣宝廉(Yi B L). 燃料电池——原理 · 技术 · 应用 (Fuel Cells: Principle, Technology, Application).北京: 化学工业出版社(Beijing: Chemical Industry Press), 2003. 160.
[2] Page K A, Soles C L, Runt J. Polymers for Energy Storage and Delivery: Polyelectrolytes for Batteries and Fuel Cells. Washington D C: American Chemical Society, 2012. 147.
[3] Doyle M, Rajendran G. Perfluorinated Membranes. NY: John Wiley & Sons, Ltd, 2010. 2.
[4] Kreuer K, Paddison S J, Spohr E, Schuster M. Chem. Rev., 2004, 104: 4637.
[5] Schuster M, Rager T, Noda A, Kreuer K D, Maier J. Fuel Cells, 2005, 5: 355.
[6] Hac?velio D?lu F, Okutan E, çelik S V, Ye?ilot S, Bozkurt A, K?l?ç A. Polymer, 2012, 53: 3659.
[7] Matsumoto K, Higashihara T, Ueda M. Macromolecules, 2009, 42: 1161.
[8] Ingratta M, Jutemar E P, Jannasch P. Macromolecules, 2011, 44: 2074.
[9] Tsang E M W, Zhang Z, Shi Z, Soboleva T, Holdcroft S. J. Am. Chem. Soc., 2007, 129: 15106.
[10] Peckham T J, Schmeisser J, Rodgers M, Holdcroft S. J. Mater. Chem., 2007, 17: 3255.
[11] Choi P, Jalani N H, Datta R. J. Electrochem. Soc., 2005, 152: E123.
[12] Kim S Y, Yoon E, Joo T, Park M J. Macromolecules, 2011, 44: 5289.
[13] Kim B, Kim J, Jung B. J. Membrane Sci., 2005, 250: 175.
[14] Kim D H, Choi J, Hong Y T, Kim S C. J. Membrane Sci., 2007, 299: 19.
[15] Hou J, Li J, Mountz D, Hull M, Madsen L A. J. Membrane Sci., 2013, 448: 292.
[16] Li J, Wilmsmeyer K G, Madsen L A. Macromolecules, 2008, 42: 255.
[17] Kreuer K, Portale G. Adv. Funct. Mater., 2013, 23: 5390.
[18] Einsla M L, Kim Y S, Hawley M, Lee H, Mcgrath J E, Liu B, Guiver M D, Pivovar B S. Chem. Mater., 2008, 20: 5636.
[19] Mauritz K A, Moore R B. Chem. Rev., 2004, 104: 4535.
[20] Gierke T D, Munn G E, Wilson F C. J. Polym. Sci.: Pol. Phys. Ed., 1981, 19: 1687.
[21] Loppinet B, Gebel G, Williams C E. J. Phys. Chem. B: Pol. Phys., 1997, 101: 1884.
[22] Loppinet B, Gebel G. Langmuir, 1998, 14: 1977.
[23] Schmidt-Rohr K, Chen Q. Nat.Mater., 2008, 7: 75.
[24] Damasceno B D, Franco A A, Malek K, Gebel G, Mossa S. ACS Nano, 2013, 7: 6767.
[25] Hsu W Y, Gierke T D. J. Membrane Sci., 1983, 13: 307.
[26] Hsu W Y, Gierke T D. Macromolecules, 1982, 15: 101.
[27] Barbi V, Funari S S, Gehrke R, Scharnagl N, Stribeck N. Polymer, 2003, 44: 4853.
[28] Gebel G. Polymer, 2000, 41: 5829.
[29] Bussian D A, O’Dea J R, Metiu H, Buratto S K. Nano Lett., 2007, 7: 227.
[30] O’Dea J R, Economou N J, Buratto S K. Macromolecules, 2013, 46: 2267.
[31] Yarusso D J, Cooper S L. Macromolecules, 1983, 16: 1871.
[32] Kreuer K D. J. Membrane Sci., 2001, 185: 29.
[33] Yakovlev S, Wang X, Ercius P, Balsara N P, Downing K H. J. Am. Chem. Soc., 2011, 133: 20700.
[34] Chen X C, Wong D T, Yakovlev S, Beers K M, Downing K H, Balsara N P. Nano Lett., 2014, 14: 4058.
[35] Campagne B, David G, Améduri B, Jones D J, Rozière J, Roche I. Macromolecules, 2013, 46: 3046.
[36] Wang L, Yi B L, Zhang H M, Xing D M. J. Phys. Chem. B, 2008, 112: 4270.
[37] Hazarika M, Jana T. ACS Appl. Mater. Interfaces, 2012, 4: 5256.
[38] Gasa J V, Weiss R A, Shaw M T. J. Membrane Sci., 2008, 320: 215.
[39] Nakabayashi K, Matsumoto K, Higashihara T, Ueda M. J. Polym. Sci. Part A: Polym. Chem., 2008, 46: 7332.
[40] Lee H, Badami A S, Roy A, Mcgrath J E. J. Polym. Sci. Part A: Polym. Chem., 2007, 45: 4879.
[41] Nieh M, Guiver M D, Kim D S, Ding J, Norsten T. Macromolecules, 2008, 41: 6176.
[42] Nakabayashi K, Higashihara T, Ueda M. J. Polym. Sci. Part A: Polym. Chem., 2010, 48: 2757.
[43] Park M J, Downing K H, Jackson A, Gomez E D, Minor A M, Cookson D, Weber A Z, Balsara N P. Nano Lett., 2007, 7: 3547.
[44] Li H, Liu Y. J. Mater. Chem. A, 2014, 2: 3783.
[45] Yao Y, Ji L, Lin Z, Li Y, Alcoutlabi M, Hamouda H, Zhang X. ACS Appl. Mater. Interfaces, 2011, 3: 3732.
[46] Sung K A, Kim W, Oh K, Choo M, Nam K, Park J. J. Power Sources, 2011, 196: 2483.
[47] Kumar M, Edwards B J, Paddison S J. J. Chem. Phys., 2013, 138: 064903.
[48] J K V. Thermodynamics of Systems Containing Flexible-Chain Polymers. Amsterdam: Elsevier, 1999.
[49] Olabisi O, Robeson L, Shaw M. Polymer-Polymer Miscibility. Academic Press: New York. 1979. 50.
[50] Wang J, Jiang S, Zhang H, Lv W, Yang X, Jiang Z. J. Membrane Sci., 2010, 364: 253.
[51] Chai Z, Wang C, Zhang H, Doherty C M, Ladewig B P, Hill A J, Wang H. Adv. Funct. Mater., 2010, 20: 4394.
[52] Tang H, Wan Z, Pan M, Jiang S P. Electrochem. Commun., 2007, 9: 2003.
[53] Ke C, Li X, Qu S, Shao Z, Yi B. Polym. Adv. Technol., 2012, 23: 92.
[54] Ke C, Li X, Shen Q, Qu S, Shao Z, Yi B. Int. J. Hydrogen Energ., 2011, 36: 3606.
[55] Gasa J V, Weiss R A, Shaw M T. J. Membrane Sci., 2008, 320: 215.
[56] Zhao S, Ren J, Wang Y, Zhang J. J. Membrane Sci., 2013, 437: 65.
[57] Guo W, Tang H, Sun M, Yang H, Pan M, Duan J. Int. J. Hydrogen Energ., 2012, 37: 9782.
[58] Kimura Y, Chen J, Asano M, Maekawa Y, Katakai R, Yoshida M. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 263: 463.
[59] Tamura T, Kawakami H. Nano Lett., 2010, 10: 1324.
[60] Onuma A, Kawaji J, Morishima M, Mizukami T, Takamori Y, Yamaga K. Polymer, 2014, 55: 2673.
[61] Li N, Wang C, Lee S Y, Park C H, Lee Y M, Guiver M D. Angew. Chem. Int. Ed., 2011, 50: 9158.
[62] Zapata P, Mountz D, Meredith J C. Macromolecules, 2010, 43: 7625.
[63] Fu R Q, Hong L, Lee J Y. Fuel Cells, 2008, 8: 52.
[64] Lee C, Wang Y. J. Polym. Sci. Part A: Polym. Chem., 2008, 46: 2262.
[65] Kwon Y H, Kim S C, Lee S. Macromolecules, 2009, 42: 5244.
[66] Hammond P T. Adv. Mater., 2004, 16: 1271.
[67] Li L, Ma R, Ebina Y, Fukuda K, Takada K, Sasaki T. J. Am. Chem. Soc., 2007, 129: 8000.
[68] Decker B, Hartmann-Thompson C, Carver P I, Keinath S E, Santurri P R. Chem. Mater., 2009, 22: 942.
[69] Yang B, Manthiram A. Electrochem. Commun., 2004, 6: 231.
[70] Wang J, Xiao L, Zhao Y, Wu H, Jiang Z, Hou W. J. Power Sources, 2009, 192: 336.
[71] Shin D W, Lee S Y, Lee C H, Lee K, Park C H, Mcgrath J E, Zhang M, Moore R B, Lingwood M D, Madsen L A, Kim Y T, Hwang I, Lee Y M. Macromolecules, 2013, 46: 7797.
[72] Beers K M, Balsara N P. ACS Macro Letters, 2012, 1: 1155.
[73] Park M J, Balsara N P. Macromolecules, 2009, 43: 292.
[74] Auerbach S M, Carrado K A, Dutta P K. Handbook of Layered Materials. New York: Marcel Dekker, Inc., 2004. 91.
[75] Alberti G, Casciola M, D’Alessandro E, Pica M. J. Mater. Chem., 2004, 14: 1910.
[76] Bauer F, Willert-Porada M. J. Membrane Sci., 2004, 233: 141.
[77] He Y, Tong C, Geng L, Liu L, Lü C. J. Membrane Sci., 2014, 458: 36.
[1] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[2] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[3] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[4] Zhao Xiaoxi, Wang Cong, Tian Yong, Wang Xiufang. Preparation of Mesoporous Carbon Materials via Emulsion Method [J]. Progress in Chemistry, 2022, 34(10): 2316-2328.
[5] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[6] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[7] Xuemei Wei, Zhanwei Ma, Xinyuan Mu, Jinzhi Lu, Bin Hu. Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous [J]. Progress in Chemistry, 2021, 33(2): 243-253.
[8] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[9] Qianwen Huang, Xiaowen Zhang, Mi Li, Xiaoyan Wu, Liyong Yuan. Preparation of Functional Fibrous Silica Nanoparticles and Their Applications in Adsorption and Separation [J]. Progress in Chemistry, 2020, 32(2/3): 230-238.
[10] Xiujun Cao, Lei Zhang, Yuanxin Zhu, Xin Zhang, Chaonan Lv, Changmin Hou. Design and Synthesis of Sillenite-Based Micro/Nanomaterials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2020, 32(2/3): 262-273.
[11] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.
[12] Wei-Pin Huang, Ke-Feng Ren, Jian Ji. New Strategies for Regulating Polymer’s Surface Microstructure [J]. Progress in Chemistry, 2020, 32(10): 1494-1503.
[13] Shifang Yuan, Yi Yan. Homonuclear Bimetallic Complex Catalysts for Olefin Polymerization [J]. Progress in Chemistry, 2019, 31(12): 1737-1748.
[14] Jiqian Wang*, Hongyu Yan, Jie Li, Liyan Zhang, Yurong Zhao, Hai Xu*. Artificial Metalloenzymes Based on Peptide Self-Assembly [J]. Progress in Chemistry, 2018, 30(8): 1121-1132.
[15] Jianxi Kang, Shirong Wang, Mengna Sun, Hongli Liu, Xianggao Li. Regulation Methods for Micro-Morphology of Bulk Heterojunction Polymer Solar Cells [J]. Progress in Chemistry, 2017, 29(4): 400-411.