中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (5): 492-502 DOI: 10.7536/PC141038 Previous Articles   Next Articles

• Review and evaluation •

Iridium Complexes for Triplet Photosensitizer

Wang Dongdong*1, Dong Hua2, Lei Xiaoli3, Yu Yue2, Jiao Bo2, Wu Zhaoxin*2   

  1. 1. Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, China;
    2. School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
    3. School of Science, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Fundamental Research Funds for the Central Universities and Shaanxi Postdoctoral Science Foundation.
PDF ( 1570 ) Cited
Export

EndNote

Ris

BibTeX

More concerns to iridium complexes are recently put on light-harvesting applications due to its fast spin-orbital coupling and long triplet lifetimes. The strategies and rules on how to tune the emission energy and improve emission efficiency of the iridium complexes are well established after active investigations in the past two decades. However, the knowledge on how to extend the absorption response of the iridium complexes toward lower energy of the visible region, and improve quantum yields and lifetimes of the excited triplet state by rational molecular design are still deficiency for scientists. Meanwhile, these parameters are crucial important for iridium complexes to be efficient photosensitizer. In this review, the general photophysical process of the iridium complex, the developed strategies/rules for tuning the absorption properties,triplet lifetimes and quantum yield of the iridium complexes are discussed. The relationships between the molecular structure of the iridium complexes and their photophyscial characteristics related to photosensitization behavior are elucidated. Also the recent development of the dye-sensitized solar cells, triplet-triplet annihilation energy upconversion, and photoinduced hydrogen production using iridium complexes as photosensitizer are reviewed.
Contents
1 Introduction
2 The photophysical characteristics of the iridium complexes and their regulation
2.1 The photophysics of the iridium complexes
2.2 The basic rules for improving absorption capacity of the iridium complexes in visible-light region
2.3 The management of triplet lifetime of the iridium complex
3 Applications of the iridium complex
3.1 Dye-sensitized solar cells
3.2 Triplet-triplet annihilation energy upconversion
3.3 Photoinduced hydrogen production
4 Conclusion

CLC Number: 

[1] Baranoff E, Yum J H, Graetzel M, Nazeeruddin M K. J. Organomet. Chem., 2009, 694: 2661.
[2] You Y, Nam W. Chem. Soc. Rev., 2012, 41: 7061.
[3] Zhao J Z, Wu W H, Sun J F, Guo S. Chem. Soc. Rev., 2013, 42: 5323.
[4] Yan Q F, Fan Y P, Zhao D H. Macromolecules, 2012, 45: 133.
[5] Schwartz K R, Chitta R, Bohnsack J N, Ceckanowicz D J, Miro P, Cramer C J, Mann K R. Inorg. Chem., 2012, 51: 5082.
[6] Sun J F, Wu W H, Zhao J Z. Chem. Eur. J., 2012, 18: 8100.
[7] Sun J F, Zhong F F, Yi X Y, Zhao J Z. Inorg. Chem., 2013, 52: 6299.
[8] Sun J F, Zhong F F, Zhao J Z. Dalton Trans., 2013, 42: 9595.
[9] Yi X Y, Zhang C S, Guo S, Ma J, Zhao J Z. Dalton Trans., 2014, 43: 1672.
[10] Sun J F, Wu W H, Guo H M, Zhao J Z. Eur. J. Inorg. Chem., 2011: 3165.
[11] Ma L H, Guo H M, Li Q T, Guo S, Zhao J Z. Dalton Trans., 2012, 41: 10680.
[12] Yi X Y, Yang P, Huang D D, Zhao J Z. Dyes Pigment., 2013, 96: 104.
[13] Hasan K, Zysman-Colman E. Inorg. Chem., 2012, 51: 12560.
[14] Takizawa S Y, Shimada K, Sato Y, Murata S. Inorg. Chem., 2014, 53: 2983.
[15] Gao R M, Ho D G, Hernandez B, Selke M, Murphy D, Djurovich P I, Thompson M E. J. Am. Chem. Soc., 2002, 124: 14828.
[16] Djurovich P I, Murphy D, Thompson M E, Hernandez B, Gao R, Hunt P L, Selke M. Dalton Trans., 2007, 3763.
[17] Mayo E I, Kilsa K, Tirrell T, Djurovich P I, Tamayo A, Thompson M E, Lewis N S, Gray H B. Photochem. Photobiol. Sci., 2006, 5: 871.
[18] Ning Z J, Zhang Q, Wu W J, Tian H. J. Organomet. Chem., 2009, 694: 2705.
[19] Shinpuku Y, Inui F, Nakai M, Nakabayashi Y. J. Photochem. Photobiol. A Chem., 2011, 222: 203.
[20] Yuan Y J, Zhang J Y, Yu Z T, Feng J Y, Luo W J, Ye J H, Zou Z G. Inorg. Chem., 2012, 51: 4123.
[21] Dragonetti C, Valore A, Colombo A, Righetto S, Trifiletti V. Inorg. Chim. Acta, 2012, 388: 163.
[22] Paulose B, Rayabarapu D K, Duan J P, Cheng C H. Adv. Mater., 2004, 16: 2003.
[23] Rayabarapu D K, Paulose B, Duan J P, Cheng C H. Adv. Mater., 2005, 17: 349.
[24] Kang D M, Kang J W, Park J W, Jung S O, Lee S H, Park H D, Kim Y H, Shin S C, Kim J J, Kwon S K. Adv. Mater., 2008, 20: 2003.
[25] Wang D D, Wu Y, Dong H, Qin Z X, Zhao D, Yu Y, Zhou G J, Jiao B, Wu Z X, Gao M, Wang G. Org. Electron., 2013, 14: 3297.
[26] Wang D D, Wu Y, Jiao B, Dong H, Zhou G J, Wang G, Wu Z X. Org. Electron., 2013, 14: 2233.
[27] Wang D D, Dong H, Zhang X Y, Wu Y, Shen S H, Jiao B, Wu Z X, Gao M, Wang G. Sci. China Chem., 2014, doi: 10.1007/s11426-014-5212-x.
[28] Wang D D, Dong H, Wu Y, Yu Y, Zhou G J, Li L, Wu Z X, Gao M, Wang G. J. Organomet. Chem., 2015, 775: 55.
[29] Baldo M A, Lamansky S, Burrows P E, Thompson M E, Forrest S R. Appl. Phys. Lett., 1999, 75: 4.
[30] Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee H E, Adachi C, Burrows P E, Forrest S R, Thompson M E. J. Am. Chem. Soc., 2001, 123: 4304.
[31] Hay P J. J. Phys. Chem. A, 2002, 106: 1634.
[32] Tang K C, Liu K L, Chen I C. Chem. Phys. Lett., 2004, 386: 437.
[33] Zhao W, Castellano F N. J. Phys. Chem. A, 2006, 110: 11440.
[34] Peng J, Jiang X P, Guo X Y, Zhao D H, Ma Y G. Chem. Commun., 2014, 50: 3.
[35] Goldsmith J I, Hudson W R, Lowry M S, Anderson T H, Bernhard S. J. Am. Chem. Soc., 2005, 127: 7502.
[36] Whang D R, Sakai K, Park S Y. Angew. Chem. Int. Edit., 2013, 52: 11612.
[37] Yu Z T, Yuan Y J, Cai J G, Zou Z G. Chem. Eur. J., 2013, 19: 1303.
[38] Yuan Y J, Yu Z T, Gao H L, Zou Z G, Zheng C, Huang W. Chem. Eur. J., 2013, 19: 6340.
[39] Jasimuddin S, Yamada T, Fukuju K, Otsuki J, Sakai K. Chem. Commun., 2010, 46: 8466.
[40] DiSalle B F, Bernhard S. J. Am. Chem. Soc., 2011, 133: 11819.
[1] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[2] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[3] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[4] Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha, Chuanlang Zhan. Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors [J]. Progress in Chemistry, 2022, 34(2): 447-459.
[5] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[6] Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang. Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes [J]. Progress in Chemistry, 2021, 33(9): 1473-1481.
[7] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[8] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[9] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[10] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[11] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[12] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[13] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.
[14] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[15] Lei Wang, Qin Zhou, Yuqiong Huang, Bao Zhang, Yaqing Feng. Interface Passivation Strategy: Improving the Stability of Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(1): 119-132.