中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (7): 913-934 DOI: 10.7536/PC141033 Previous Articles   Next Articles

• Review and comments •

Quaternary Compound Semiconductor Cu2 ZnSnS4: Structure, Preparation, Applications, and Perspective

Zhao Xiang, Zhao Zongyan*   

  1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21263006) and the Science Research Foundation of Educational Commission of Yunnan Province of China (No. 2012Y542).
PDF ( 2818 ) Cited
Export

EndNote

Ris

BibTeX

The compositions of quaternary compound semiconductor Cu2 ZnSnS4 (CZTS) not only are non-toxic, but also have high abundances in the earth crust, thus its raw materials cost is relative cheap. As a direct band-gap semiconductor, the absorption curve of CZTS is very well matching with solar radiation spectra, and has a large optical absorption coefficient. Besides, its crystal structure, composition, and properties can be easily adjusted and controlled. So, CZTS presents excellent optoelectric performance, and is considered as the ideal key materials for the development of green, low-cost, high-efficient, and stable thin film solar cells. Recently, the crystal structures, physical and chemical properties, preparation technology, and various applications of CZTS have been extensive investigated. Especially, the researches about adjust and control the structure or composition to improve the photoelectric conversion efficiency of CZTS-based thin film solar cells have been received extensive concerning. In this review, the progress of CZTS research (including crystal structure evolution, preparation technology, optoelectric properties, and applications) has been summarized, in which the relationship between intrinsic factors (such as crystal structures, defects, surface, interface, and alloy effects) and photovoltaic performance of CZTS has been emphasized. Meanwhile, as the novel energy conversion materials, the applications of CZTS in the fields of photocatalysis and thermoelectrics have been also discussed. Finally, current challenge and future hotspots of CZTS are point out, and the possible breakthrough direction is forecasted.

Contents
1 Introduction
2 Crystal structure evolution
3 Preparation technologies
3.1 Vapor phase methods
3.2 Liquid phase methods
3.3 Solid phase methods
4 Theoretical calculations
4.1 Crystal structure and basic physical properties
4.2 Aolly semiconductors
4.3 Defects
5 Applications
5.1 Photovoltaics
5.2 Photocatalysis
5.3 Thermoelectrics
6 Challenge and outlook

CLC Number: 

[1] Solar Energy's Path Towards Competitiveness. Nat. Mater., 2012, 11: 173.
[2] Conibeer G. Mater. Today, 2007, 10: 42.
[3] Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E. IEEE J. Photovolt., 2013, 4: 96.
[4] Gloeckler M, Sankin I, Zhao Z. IEEE J.Photovolt., 2013, 3: 1389.
[5] Powalla M, Jackson P, Witte W, Hariskos D, Paetel S, Tschamber C, Wischmann W. Sol. Energy Mater. Sol. Cells, 2013, 119: 51.
[6] Wada T, Nakamura S, Maeda T. Prog. Photovolt. Res. App., 2012, 20: 520.
[7] Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I. Phys. Status Solidi (b), 2008, 245: 1772.
[8] Yoo H, Kim J. Sol. Energy Mater. Sol. Cells, 2011, 95: 239.
[9] Nitsche R, Sargent D, Wild P. J. Cryst. Growth, 1967, 1: 52.
[10] Ito K, Nakazawa T. Jpn. J. Appl. Phys., 1988, 27: 2094.
[11] Katagiri H, Sasaguchi N, Hando S, Hoshino S, Ohashi J, Yokota T. Sol. Energy Mater. Sol. Cells, 1997, 49: 407.
[12] Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B. Adv. Energy Mater., 2014, 4: 1.
[13] Fan F J, Wu L, Yu S H. Energy Environ. Sci., 2014, 7: 190.
[14] (a) Goodman C H L. J. Phys. Chem. Solids, 1958, 6: 305.; (b) Pamplin B R. Nature, 1960, 188: 136.
[15] Chen S, Gong X G, Walsh A, Wei S H. Phys. Rev. B, 2009, 79: 165211.
[16] 陈时友(Chen S Y), 龚新高(Gong X G), Walsh A, 魏苏淮(Wei S H). 物理 (Physics), 2011, 40: 248.
[17] Nakamura S, Maeda T, Wada T. Jpn. J. Appl. Phys., 2011, 50: 05FF01.
[18] Schorr S, Hoebler H J, Tovar M. Eur. J. Mineral., 2007, 19: 65.
[19] Chen S, Walsh A, Luo Y, Yang J H, Gong X, Wei S H. Phys. Rev. B, 2010, 82: 195203.
[20] Lu X, Zhuang Z, Peng Q, Li Y. Chem. Commun., 2011, 47: 3141.
[21] Jimbo K, Kimura R, Kamimura T, Yamada S, Maw W S, Araki H, Oishi K, Katagiri H. Thin Solid Films, 2007, 515: 5997.
[22] Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw W S, Fukano T, Ito T, Motohiro T. Appl. Phys. Express, 2008, 1: 041201.
[23] Chawla V, Clemens B. Photovoltaic Specialists Conference (PVSC). Austin: IEEE, 3~8 June 2012. 002990.
[24] Zhang J, Shao L. Sci. China. E: Technol. Sci., 2009, 52: 269.
[25] Tanaka T, Kawasaki D, Nishio M, Guo Q, Ogawa H. Phys. Status Solidi (c), 2006, 3: 2844.
[26] Oishi K, Saito G, Ebina K, Nagahashi M, Jimbo K, Maw W S, Katagiri H, Yamazaki M, Araki H, Takeuchi A. Thin Solid Films, 2008, 517: 1449.
[27] Wang K, Gunawan O, Todorov T, Shin B, Chey S, Bojarczuk N, Mitzi D, Guha S. Appl. Phys. Lett., 2010, 97: 143508.
[28] Weber A, Schmidt S, Abou-Ras D, Schubert-Bischoff P, Denks I, Mainz R, Schock H W. Appl. Phys. Lett., 2009, 95: 041904.
[29] Katagiri H. Thin Solid Films, 2005, 480: 426.
[30] Sekiguchi K, Tanaka K, Moriya K,Uchiki H. Phys. Status Solidi (c), 2006, 3: 2618.
[31] Moholkar A, Shinde S, Babar A, Sim K U, Kwon Y b, Rajpure K, Patil P, Bhosale C, Kim J. Sol. Energy Mater. Sol. Cells, 2011, 85: 1354.
[32] Thimsen E, Riha S C, Baryshev S V, Martinson A B, Elam J W, Pellin M J. Chem. Mater., 2012, 24: 3188.
[33] Washio T, Shinji T, Tajima S, Fukano T, Motohiro T, Jimbo K, Katagiri H. J. Mater. Chem., 2012, 22: 4021.
[34] Kamoun N, Bouzouita H, Rezig B. Thin Solid Films, 2007, 515: 5949.
[35] Levcenko S, Tezlevan V E, Arushanov E, Schorr S, Unold T. Phys. Rev. B, 2012, 86: 045206.
[36] Shinde N, Lokhande C, Kim J, Moon J. J. Photoch. Photobio. A, 2012, 235: 14.
[37] Ennaoui A, Lux-Steiner M, Weber A, Abou-Ras D, Kötschau I, Schock H W, Schurr R, Hölzing A, Jost S, Hock R. Thin Solid Films, 2009, 517: 2511.
[38] Scragg J J, Berg D M, Dale P J. J. Electroanal. Chem., 2010, 646: 52.
[39] Guo Q, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W, Agrawal R. J. Am. Chem. Soc., 2010, 132: 17384.
[40] Shi C, Shi G, Chen Z, Sun R, Xia M. J. Chin. Ceramic. Soc., 2011, 39: 1108.
[41] Chen L J, Chuang Y J. Mater. Lett., 2013, 91: 372.
[42] Sarswat P K, Free M L. J. Cryst. Growth, 2013, 372: 87.
[43] Tanaka K, Fukui Y, Moritake N, Uchiki H. Sol. Energy Mater. Sol. Cells, 2011, 95: 838.
[44] Mali S S, Patil B M, Betty C A, Bhosale P N, Oh Y W, Jadkar S R, Devan R S, Ma Y R, Patil P S. Electrochim. Acta, 2012, 66: 216.
[45] Luo P, Zhao L X, Xu J. Int J. Inorg. Mater., 2012, 1: 79.
[46] Chane-Ching J Y, Gillorin A, Zaberca O, Balocchi A. Marie X. Chem. Commun., 2011, 47: 5229.
[47] Wibowo R A, Jung W H, Kim K H. J. Phys. Chem. Solids, 2010, 71: 1702.
[48] Wang Y, Gong H. J. Alloys Compd., 2011, 509: 9627.
[49] Zhou Z, Wang Y, Xu D, Zhang Y. Sol. Energy Mater. Sol. Cells, 2010, 94: 2042.
[50] Scragg J J, Kubart T, Wätjen J T, Ericson T, Linnarsson M K, Platzer-Björkman C. Chem. Mater., 2013, 25: 3162.
[51] Sugimoto H, Hiroi H, Sakai N, Muraoka S, Katou T. Photovoltaic Specialists Conference (PVSC). Austin: IEEE, 3~8 June 2012. 002997.
[52] Repins I, Beall C, Vora N, DeHart C, Kuciauskas D, Dippo P, To B, Mann J, Hsu W C, Goodrich A. Sol. Energy Mater. Sol. Cells, 2012, 101: 154.
[53] Nandur A, White B. Thin film Photovoltaic Absorber Material. State University of New York at Binghamton: APS, 2013.
[54] Ahmed S, Reuter K B, Gunawan O, Guo L, Romankiw L T, Deligianni H. Adv. Energy Mater., 2012, 2: 253.
[55] Timmo K, Altosaar M, Raudoja J, Muska K, Pilvet M, Kauk M, Varema T, Danilson M, Volobujeva O, Mellikov E. Sol. Energy Mater. Sol. Cells, 2010, 94: 1889.
[56] Reshak A, Nouneh K, Kityk I, Bila J, Auluck S, Kamarudin H, Sekkat Z. Int. J. Electrochem. Sci., 2014, 9: 955.
[57] Chen S, Gong X, Walsh A, Wei S H. Appl. Phys. Lett., 2009, 94: 041903.
[58] Maeda T, Nakamura S, Wada T. Jpn. J. Appl. Phys., 2011, 50: 04DP07.
[59] Wang C, Chen S, Yang J H, Lang L, Xiang H, Gong X, Walsh A, Wei S H. Chem. Mater., 2014, 26: 3411.
[60] Chen S, Walsh A, Gong X G, Su H W. Adv. Mater., 2013, 25: 1522.
[61] Zhao H, Persson C. Thin Solid Films, 2011, 519: 7508.
[62] Shen S, Wang Q. Chem. Mater., 2013, 25: 1166.
[63] Fairbrother A, Fontané X, Izquierdo-Roca V, Espíndola-Rodríguez M, López-Marino S, Placidi M, Calvo-Barrio L, Pérez-Rodríguez A, Saucedo E. Sol. Energy Mater. Sol. Cells, 2013, 112: 97.
[64] Jaffe J E, Zunger A. Phys. Rev. B, 2001, 64: 241304.
[65] Xu P, Chen S, Huang B, Xiang H J, Gong X G, Wei S H. Phys. Rev. B, 2013, 88: 045427.
[66] Paris M, Choubrac L, Lafond A, Guillot-Deudon C, Jobic S. Inorg. Chem., 2014, 53: 8646.
[67] He J, Sun L, Chen S, Chen Y, Yang P, Chu J. J. Alloys Compd., 2012, 511: 129.
[68] Chen S, Gong X G, Walsh A, Wei S H. MRS Pro., Cambridge University Press, 2011, 1370: 55.
[69] Erslev P T, Young M R, Li J V, Siah S C, Chakraborty R, Du H, Lad R J, Buonassisi T, Teeter G. Sol. Energy Mater. Sol. Cells, 2014, 129: 124.
[70] Zhang X, Shi X, Ye W, Ma C, Wang C. Appl. Phys. A, 2009, 94: 381.
[71] Chen S, Gong X G, Walsh A, Wei S H. Appl. Phys. Lett., 2010, 96: 021902.
[72] Chen S, Yang J H, Gong X G, Walsh A, Wei S H. Phys. Rev.B, 2010, 81: 245204.
[73] Tablero C. J. Phys. Chem. C, 2012, 116: 23224.
[74] Maeda T, Nakamura S, Wada T. Jpn. J. Appl. Phys., 2012, 51: 10NC11.
[75] Miles R, Zoppi G, Forbes I. Mater. Today, 2007, 10: 20.
[76] Todorov T K, Reuter K B, Mitzi D B. Adv. Mater., 2010, 22: E156.
[77] Barkhouse D A R, Gunawan O, Gokmen T, Todorov T K, Mitzi D B. Prog. Photovoltaics: Res. App., 2012, 20: 6.
[78] Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi D B. Adv. Energy Mater., 2013, 3: 34.
[79] Fan F J, Wu L, Gong M, Liu G, Wang Y X, Yu S H, Chen S, Wang L W, Gong X G. ACS Nano, 2013, 7: 1454.
[80] Cao Y, Xiao Y, Jung J Y, Um H D, Jee S W, Choi H M, Bang J H, Lee J H. ACS Appl. Mater. Intertaces, 2013, 5: 479.
[81] He J, Lee L T L, Yang S, Li Q, Xiao X, Chen T. ACS Appl. Mater. Interfaces, 2014, 6: 2224.
[82] Dai P, Zhang G, Chen Y, Jiang H, Feng Z, Lin Z, Zhan J. Chem. Commun., 2012, 48: 3006.
[83] Xin X, He M, Han W, Jung J, Lin Z. Angew. Chem. Int. Ed., 2011, 50: 11739.
[84] Wang L, Wang W, Sun S. J. Mater. Chem., 2012, 22: 6553.
[85] Rovelli L, Tilley S D, Sivula K. ACS Appl. Mater. Interfaces, 2013, 5: 8018.
[86] 李玲(Li L), 郑柳萍(Zheng L), 颜桂炀(Yan G), 潘青山(Pan Q), 化学发展前沿(Scientific Journal of Frontier Chemical Development), 2012, 2: 59.
[87] Chang Z X, Zhou W H, Kou D X, Zhou Z J, Wu S X.Chem. Commun., 2014, 50: 12726.
[88] Liu M L, Huang F Q, Chen L D, Chen I W. Appl. Phys. Lett., 2009, 94: 02103.
[89] Yang H, Jauregui L A, Zhang G, Chen Y P, Wu Y. Nano Lett., 2012, 12: 540.
[90] Fan F J, Wu L, Yu S H. Energ Environ. Sci., 2014, 7: 190.
[91] Parasyuk O, Piskach L, Romanyuk Y, Olekseyuk I, Zaremba V, Pekhnyo V. J. Alloys Compd., 2005, 397: 85.
[92] Fries T, Shapira Y, Palacio F, Morón M C, McIntyre G J, Kershaw R, Wold A, McNiff E. Phys. Rev. B, 1997, 56: 5424.
[1] Liu Li, Cao Yang, He Junhui*, Yang Qiaowen. Preparation and Optoelectronic Applications of Silicon Nanowire Arrays [J]. Progress in Chemistry, 2013, 25(0203): 248-259.
[2] Zhu Baolin|Li Kairong|Zhang Shoumin|Wu Shihua |Huang Weiping**. Preparation and Modification of One-Dimensional Metal Oxides [J]. Progress in Chemistry, 2008, 20(01): 48-53.