中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (4): 404-415 DOI: 10.7536/PC141024 Previous Articles   Next Articles

• Review and evaluation •

Graphene/Metal Oxide Composites as Electrode Material for Supercapacitors

Li Dan1, Liu Yurong1,2, Lin Baoping*1, Sun Ying1, Yang Hong1, Zhang Xueqin1   

  1. 1. School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China;
    2. Research Institute for New Materials Technology, Chongqing University of Arts and Science, Yongchuan 402160, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21304018, 21374016).
PDF ( 3559 ) Cited
Export

EndNote

Ris

BibTeX

Supercapacitor has been recognized as a very promising new energy storage device due to its high power density and long cycle life. Carbon materials, metal oxides and conductive polymers are three more commonly utilized electrode materials for supercapacitors. The combination of the cycling stability of graphene and high capacity of metal oxide provides the graphene/metal oxide composite superiors performance. Consequently, significant research interest has been directed into the research of the graphene/metal oxide composite. In this paper, we present a review on the research progress of the graphene/metal oxide composite for supercapacitor application in term of the types of metal oxides, grapheme structure and preparation methods. Furthermore, the optimum synthesizing conditions and an outlook of the developing trend for the graphene/metal oxide composite are summarized.

Contents
1 Introduction
2 MnO2/graphene composites
2.1 Solvothermal (hydrothermal) method
2.2 Electrochemical deposition
2.3 Chemical reaction
2.4 Self-assembly method
3 RuO2/graphene composites
3.1 Sol-gel method
3.2 Solvothermal (hydrothermal) method
4 NiO/graphene composites
4.1 Chemical precipitation
4.2 Solvothermal (hydrothermal) method
4.3 Other methods
5 Co3O4/graphene composites
5.1 Chemical precipitation
5.2 Solvothermal (hydrothermal) method
5.3 Other methods
6 ZnO/graphene composites
7 Other metal oxides
8 Binary metal oxides
9 Conclusion

CLC Number: 

[1] Wang H L, Casalongue H S, Liang Y Y, Dai H J. J. Am. Chem. Soc., 2010, 132: 7472.
[2] Wang H L, Liang Y Y, Mirfakhrai T, Chen Z, Casalongue H S, Dai H J. Nano Res., 2011, 4: 729.
[3] Wang Y, Gai S L, Niu N, He F, Yang P P. J. Mater. Chem. A, 2013, 1: 9083.
[4] Min S D, Zhao C J, Chen G R, Qian X Z. Electrochim. Acta, 2014, 115: 155.
[5] Li L, Seng K H, Liu H, Nevirkovets I P, Guo Z P. Electrochim. Acta, 2013, 87: 801.
[6] Dubal D P, Kim J G, Kim Y, Holze R, Lokhande C D, Kim W B. Energy Technol., 2014, 2: 325.
[7] 徐斌(Xu B), 张浩(Zhang H), 曹高萍(Cao G P), 张文峰(Zhang W F), 杨裕生(Yang Y S). 化学进展(Progress in Chemistry), 2011, 605.
[8] Liu W J, Kao T W, Dai Y M, Jehng J M. J. Solid State Electrochem., 2014, 18: 189.
[9] 万厚钊(Wan H Z), 缪灵(Miao L), 徐葵(Xu K), 亓同(Qi T), 江建军 (Jiang J J). 化工学报(Journal of Chemical Industry), 2013, 64: 801.
[10] Zhu J W, Chen S, Zhou H, Wang X. Nano Res., 2011, 5: 11.
[11] Chen S, Duan J J, Jaroniec M, Qiao S Z. J. Mater. Chem. A, 2013, 1: 9409.
[12] Zhang H T, Zhang X, Zhang D C, Sun X Z, Lin H, Wang C H, Ma Y W. J. Phys. Chem. B, 2013, 117: 1616.
[13] Wang B, Park J, Wang C Y, Ahn H, Wang G X. Electrochim. Acta, 2010, 55: 6812.
[14] Liu C L, Chang K H, Hu C C, Wen W C. J. Power Sources, 2012, 217: 184.
[15] Rakhi R B, Chen W, Cha D, Alshareef H N. J. Mater. Chem., 2011, 21 : 16197.
[16] Wang H W, Hu Z A, Chang Y Q, Chen Y L, Lei Z Q, Zhang Z Y, Yan Y Y. Electrochim. Acta, 2010, 55: 8974.
[17] Pendashteh A, Mousavi M F, Rahmanifar M S. Electrochim. Acta, 2013, 88: 347.
[18] Xia X H, Chao D L, Fan Z X, Guan C, Cao X H, Zhang H, Fan H J. Nano Lett., 2014, 14: 1651.
[19] Lee J S, Lee C, Jun J, Shin D H, Jang J. J. Mater. Chem. A, 2014, 2: 11922.
[20] 柏嵩(Bai S), 沈小平(Shen X P). 化学进展(Progress in Chemistry), 2010, 22: 2106.
[21] 徐秀娟(Xu X J), 秦金贵(Qing J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21: 2559.
[22] 李健(Li J), 官亦标(Guan Y B), 傅凯(Fu K), 苏岳锋(Su Y F), 包丽颖(Bao L Y), 吴锋(Wu F). 化学进展(Progress in Chemistry), 2014, 26(07): 1233.
[23] 来常伟(Lai C W), 孙莹(Sun Y), 杨洪(Yang H), 张雪勤(Zhang X Q), 林保平(Lin B P). 化学学报(Acta Chimica Sinica), 2013, 1201.
[24] Huang Y, Liang J J, Chen Y S. Small, 2012, 8(12): 1805.
[25] Tan Y B, Lee J M. J. Mater. Chem. A, 2013, 1(47): 14814.
[26] 康怡然(Kang Y R), 蔡锋(Cai F), 陈宏源(Chen H Y), 陈名海(Chen M H), 张锐(Zhang R), 李清文(Li Q W). 化学进展(Progress in Chemistry), 2014, 26: 1562.
[27] Lake J R, Cheng A, Selverston S, Tanaka Z, Koehne J, Meyyappan M, Chen B. J. Vac. Sci. Technol. B, 2012, 30: 03D118.
[28] Xu Y X, Huang X Q, Lin Z Y, Zhong X, Huang Y, Duan X F. Nano Res., 2012, 6: 65.
[29] Zhu L X, Zhang S, Cui Y H, Song H H, Chen X H. Electrochim. Acta, 2013, 89: 18.
[30] Guo G L, Huang L, Chang Q H, Ji L C, Liu Y, Xie Y Q, Shi W Z, Jia N Q. Appl. Phys. Lett., 2011, 99: 083111.
[31] Zhu Y G, Wang Y, Shi Y, Huang Z X, Fu L, Yang H Y. Adv. Energy Mater., 2014, 4(9): 1301788.
[32] Purushothaman K K, Saravanakumar B, Babu I M, Sethuraman B, Muralidharan G. RSC Adv., 2014, 4: 23485.
[33] Liu M M, Sun J. J. Mater. Chem. A, 2014, 2: 12068.
[34] Liu Y, Ying Y L, Mao Y Y, Gu L, Wang Y W, Peng X S. Nanoscale, 2013, 5: 9134.
[35] Chen S, Xing W, Duan J J, Hu X J, Qiao S Z. J. Mater. Chem. A, 2013, 1: 2941.
[36] Li Y, Zhao N Q, Shi C S, Liu E Z, He C N. J. Phys. Chem. C, 2012, 116: 25226.
[37] Wei W F, Cui X W, Chen W X, Ivey D G. Chem. Soc. Rev., 2011, 40: 1697.
[38] Chang J, Jin M H, Yao F, Kim T H, Le V T, Yue H Y, Gunes F, Li B, Ghosh A, Xie S, Lee Y H. Adv. Funct. Mater., 2013, 23: 5074.
[39] Li X C, Xu X Y, Xia F L, Bu L X, Qiu H X, Chen M X, Zhang L, Gao J P. Electrochim. Acta, 2014, 130: 305.
[40] Yu A P, Sy A, Davies A. Synth. Met., 2011, 161: 2049.
[41] Zhao X, Zhang L L, Murali S, Stoller M D, Zhang Q H, Zhu Y W, Ruoff R S. ACS Nano, 2012, 6: 5404.
[42] Yang W L, Gao Z, Wang J, Wang B, Liu Q, Li Z S, Mann T, Yang P P, Zhang M L, Liu L H. Electrochim. Acta, 2012, 69: 112.
[43] Kim M, Yoo M, Yoo Y, Kim J. Microelectron. Reliab., 2014, 54: 587.
[44] Dong X C, Wang X W, Wang J, Song H, Li X G, Wang L H, Chan-Park M B, Li C M, Chen P. Carbon, 2012, 50: 4865.
[45] Zhu X L, Zhang P, Xu S, Yan X B, Xue Q J. ACS Appl. Mater. Interfaces, 2014, 6: 11665.
[46] Dai X J, Shi W M, Cai H Q, Li R, Yang G C. Solid State Sci., 2014, 27: 17.
[47] Chan P Y, Rusi Majid S R. Solid State Ionics, 2014, 262: 226.
[48] Li Y J, Wang G L, Ye K, Cheng K, Pan Y, Yan P, Yin J L, Cao D X. J. Power Sources, 2014, 271: 582.
[49] He Y M, Chen W J, Li X D, Zhang Z X, Fu J C, Zhao C H, Xie E Q. ACS Nano, 2013, 7: 174.
[50] Zhao Y Q, Zhao D D, Tang P Y, Wang Y M, Xu C L, Li H L. Mater. Lett., 2012, 76: 127.
[51] Zhang Z Y, Xiao F, Qian L H, Xiao J W, Wang S, Liu Y Q. Adv. Energy Mater., 2014, 4: 1400064.
[52] Liu T T, Shao G J, Ji M T, Wang G L. J. Solid State Chem., 2014, 215: 160.
[53] Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L C. Carbon, 2011, 49: 2917.
[54] Yu G H, Hu L B, Vosgueritchian M, Wang H L, Xie X, McDonough J R, Cui X, Cui Y, Bao Z A. Nano Lett., 2011, 11: 2905.
[55] Li Z P, Wang J Q, Liu S, Liu X H, Yang S R. J. Power Sources, 2011, 196: 8160.
[56] Qian Y, Lu S B, Gao F L. J. Mater. Sci., 2011, 46: 3517.
[57] Choi B G, Yang M, Hong W H, Choi J W, Huh Y S. ACS Nano, 2012, 6: 4020.
[58] Ge J, Yao H B, Hu W, Yu X F, Yan Y X, Mao L B, Li H H, Li S S, Yu S H. Nano Energy, 2013, 2: 505.
[59] Mao L, Zhang K, Chan H S O, Wu J S. J. Mater. Chem., 2012, 22: 1845.
[60] Patil U M, Sohn J S, Kulkarni S B, Park H G, Jung Y, Gurav K V, Kim J H, Jun S C. Mater. Lett., 2014, 119: 135.
[61] Li Z P, Wang J Q, Liu X H, Liu S, Ou J F, Yang S R. J. Mater. Chem., 2011, 21: 3397.
[62] Cheng H H, Long L, Shu D, Wu J Q, Gong Y B, He C, Kang Z X, Zou X P. Int. J. Hydrogen Energy, 2014, 39: 16151.
[63] Feng X M, Chen N N, Zhang Y, Yan Z Z, Liu X F, Ma Y W, Shen Q M, Wang L H, Huang W. J. Mater. Chem. A, 2014, 2: 9178.
[64] Wu Z S, Ren W C, Wang D W, Li F, Liu B L, Cheng H M. ACS Nano, 2010, 4: 5835.
[65] Chen H, Zhou S X, Chen M, Wu L M. J. Mater. Chem., 2012, 22: 25207.
[66] Wu S S, Chen W F, Yan L F. J. Mater. Chem. A, 2014, 2: 2765.
[67] Fan Z J, Yan J, Wei T, Zhi L J, Ning G Q, Li T Y, Wei F. Adv. Funct. Mater., 2011, 21: 2366.
[68] Zhang C Y, Zhu X H, Wang Z X, Sun P, Ren Y J, Zhu J L, Zhu J G, Xiao D Q. Nanoscale Res. Lett., 2014, 9: 490.
[69] Lee M T, Fan C Y, Wang Y C, Li H Y, Chang J K, Tseng C M. J. Mater. Chem. A, 2013, 1: 3395.
[70] Lee K G, Jeong J M, Lee S J, Yeom B, Lee M K, Choi B G. Ultrason. Sonochem., 2015, 22: 42.
[71] Mishra A K, Ramaprabhu S. J. Phys. Chem. C, 2011, 115: 14006.
[72] Chen Y, Zhang X, Zhang D C, Ma Y W. J. Alloys Compd., 2012, 511: 251.
[73] Kim J Y, Kim K H, Yoon S B, Kim H K, Park S H, Kim K B. Nanoscale, 2013, 5: 6804.
[74] Shen J F, Li T, Huang W S, Long Y, Li N, Ye M X. Electrochim. Acta, 2013, 95: 155.
[75] Lin N, Tian J H, Shan Z Q, Chen K A, Liao W M. Electrochim. Acta, 2013, 99: 219.
[76] Bu Y F, Wang S N, Jin H L, Zhang W M, Lin J J, Wang J C. J. Electrochem. Soc., 2012, 159: A990.
[77] Zhao B, Song J S, Liu P, Xu W W, Fang T, Jiao Z, Zhang H J, Jiang Y. J. Mater. Chem., 2011, 21: 18792.
[78] Zhu X J, Dai H L, Hu J, Ding L, Jiang L. J. Power Sources, 2012, 203: 243.
[79] Wu C H, Deng S X, Wang H, Sun Y X, Liu J B, Yan H. ACS Appl. Mater. Interfaces, 2014, 6: 1106.
[80] Huang M L, Gu C D, Ge X, Wang X L, Tu J P. J. Power Sources, 2014, 259: 98.
[81] Su X H, Chai H, Jia D Z, Bao S J, Zhou W Y, Zhou M L. New J. Chem., 2013, 37: 439.
[82] Jiang Y, Chen D D, Song J S, Jiao Z, Ma Q L, Zhang H J, Cheng L L, Zhao B, Chu Y L. Electrochim. Acta, 2013, 91: 173.
[83] Yang Y Y, Hu Z A, Zhang Z Y, Zhang F H, Zhang Y J, Liang P J, Zhang H Y, Wu H Y. Mater. Chem. Phys., 2012, 133: 363.
[84] Ge C Y, Hou Z H, He B H, Zeng F Y, Cao J G, Liu Y M, Kuang Y F. J. Sol-Gel Sci. Technol., 2012, 63: 146.
[85] Zhao B, Zhuang H, Fang T, Jiao Z, Liu R Z, Ling X T, Lu B, Jiang Y. J. Alloys Compd. , 2014, 597: 291.
[86] Lee G H, Cheng Y W, Varanasi C V, Liu J. J. Phys. Chem. C, 2014, 118(5): 2281.
[87] Dam D T, Wang X, Lee J M. ACS Appl. Mater. Interfaces, 2014, 6: 8246.
[88] Cao X H, Shi Y M, Shi W H, Lu G, Huang X, Yan Q Y, Zhang Q C, Zhang H. Small, 2011, 7: 3163.
[89] Xie L J, Wu J F, Chen C M, Zhang C M, Wan l, Wang J L, Kong Q Q, Lv C X, Li K X, Sun G H. J. Power Sources, 2013, 242: 148.
[90] Yan J, Wei T, Qiao W M, Shao B, Zhao Q K, Zhang L J, Fan Z J. Electrochim. Acta, 2010, 55: 6973.
[91] Park S, Kim S. Electrochim. Acta, 2013, 89: 516.
[92] Kumar R, Kim H J, Park S, Srivastava A, Oh I K. Carbon, 2014, 79: 192.
[93] Yuan C Z, Zhang L H, Hou L R, Pang G, Oh W C. RSC Adv., 2014, 4: 14408.
[94] Wang X W, Liu S Q, Wang H Y, Tu F Y, Fang D, Li Y H. J. Solid State Electrochem., 2012, 16: 3593.
[95] Guan Q, Cheng J L, Wang B, Ni W, Gu G F, Li X D, Huang L, Yang G C, Nie F D. ACS Appl. Mater. Interfaces, 2014, 6: 7626.
[96] Dong X C, Xu H, Wang X W, Huang Y X, Chan-Park M B, Zhang H, Wang L H, Huang W, Chen P. ACS Nano, 2012, 6: 3206.
[97] Zhou W W, Liu J P, Chen T, Tan K S, Jia X T, Luo Z Q, Cong C X, Yang H P, Li H M, Yu T. Phys. Chem. Chem. Phys., 2011, 13: 14462.
[98] Wang H Z, Shi Y L, Li Z X, Zhang W G, Yao S W. Chem. Res. Chin. Univ., 2014, 30: 650.
[99] Prakash A, Bahadur D. ACS Appl. Mater. Interfaces, 2014, 6: 1394.
[100] Ramadoss A, Kim S J. Mater. Chem. Phys., 2013, 140: 405.
[101] Zhang L D, Du G X, Zhou B, Wang L. Ceram. Int., 2014, 40: 1241.
[102] Chen Y L, Hu Z A, Chang Y Q, Wang H W, Zhang Z Y, Yang Y Y, Wu H Y. J. Phys. Chem. C, 2011, 115: 2563.
[103] Haldorai Y, Voit W, Shim J J. Electrochim. Acta, 2014, 120: 65.
[104] Li Z J, Liu P, Yun G Q, Shi K, Lv X W, Li K, Xing J H, Yang B C. Energy, 2014, 69: 266.
[105] Dong X C, Cao Y F, Wang J, Chan-Park M B, Wang L H, Huang W, Chen P. RSC Adv., 2012, 2: 4364.
[106] Wang Q H, Jiao L F, Du H M, Wang Y J, Yuan H T. J. Power Sources, 2014, 245: 101.
[107] Wang Z, Ma C Y, Wang H L, Liu Z H, Hao Z P. J. Alloys Compd. , 2013, 552: 486.
[108] Zhao P H, Li W L, Wang G, Yu B Z, Li X J, Bai J T, Ren Z Y. J. Alloys Compd. , 2014, 604: 87.
[109] Ma Z L, Huang X B, Dou S, Wu J H, Wang S Y. J. Phys. Chem. C, 2014, 118: 17231.
[110] Low Q X, Ho G W. Nano Energy, 2014, 5: 28.
[111] Wang H W, Xu Z J, Yi H, Wei H G, Guo Z H, Wang X F. Nano Energy, 2014, 7: 86.
[112] Hsieh C T, Lee W Y, Lee C E, Teng H S. J. Phys. Chem. C, 2014, 118: 15146.
[113] Chen M X, Wang H, Li L Z, Zhang Z, Wang C, Liu Y, Wang W, Gao J P. ACS Appl. Mater. Interfaces, 2014, 6: 14327.
[114] Hu X N, Yan Z, Li Q, Yang Q, Kang L P, Lei Z B, Liu Z H. Colloids Surf. A, 2014, 461: 105.
[115] Nagaraju D H, Wang Q X, Beaujuge P, Alshareef H N. J. Mater. Chem. A, 2014, 2: 17146.
[116] Shen J F, Li X F, Li N, Ye M X. Electrochimica Acta, 2014, 141: 126.
[117] Luo Y Z, Zhang H M, Guo D, Ma J M, Li Q H, Chen L B, Wang T H. Electrochim. Acta, 2014, 132: 332.
[118] Wei Y Y, Chen S Q, Su D W, Sun B, Zhu J G, Wang G X. J. Mater. Chem. A, 2014, 2: 8103.
[119] Wang L, Wang X H, Xiao X P, Xu F G, Sun Y J, Li Z. Electrochim. Acta, 2013, 111: 937.
[120] Xu X W, Shen J F, Li N, Ye M X. J. Alloys Compd. , 2014, 616: 58.
[121] Wang Z, Zhang X, Li Y, Liu Z T, Hao Z P. J. Mater. Chem. A, 2013, 1: 6393.
[122] Wang Y H, He P, Lei W, Dong F Q, Zhang T H. Composites Sci. Technol., 2014, 103: 16.
[1] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[2] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[3] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[4] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[5] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[6] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[7] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[8] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[9] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[10] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[11] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[12] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[13] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[14] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[15] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.