中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (4): 361-372 DOI: 10.7536/PC141023 Previous Articles   Next Articles

• Review and evaluation •

TinO2n-1 Series Compounds——Properties, Preparation Methods and Applications

Ying Hangjun, Tian Huajun, Meng Zhen, Han Weiqiang*   

  1. Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (No.XDA01020304), the National Natural Science Foundation of China (No.51371186), the Ningbo 3315 International Team of Advanced Energy Storage Materials, the Zhejiang Province Key Science and Technology Innovation Team (No. 2013PT16), the Zhejiang Province Preferential Postdoctoral Funded Project (No.BSH1302055), and Ningbo Natural Science Foundation (No. 2014A610046).
PDF ( 1994 ) Cited
Export

EndNote

Ris

BibTeX

TinO2n-1 is a series of substoichiometric oxides of titanium with many excellent properties such as high electronic conductivity, strong visible light absorption, outstanding electrochemistry stability and environmental compatibility. Ti4O7 exhibits a single crystal conductivity of 1500 S ·cm-1, comparable to that of graphite. These materials have been studied for many years and their properties of structure, magnetics and electrics have been widely investigated. A lot of preparation methods have been developed for the purpose of property research and application development. The most commonly used preparation method is reduction of TiO2 or its precursor at a high temperature, and some interesting morphologies have been obtained, like nanosphere, nanorod and nanowire. In recent years, their wonderful properties arouse peoples interest for their applications in noble electrodes, catalyst carriers, lithium batteries, thermoelectric and photoelectric materials, photocatalysis materials and so on. For example, Ti4O7 has been commoditized and utilized in many fields. However, a lot of work is remained to do for the full use of these titanic oxides, such as exploration of new feature and strategies to improve the specific surface area of these materials.According to the work of the predecessors, this paper introduces the structure features, physicochemical properties of TinO2n-1, and makes a summary of some typical preparation methods and applications, with the purpose of providing some reference for the research and development of TinO2n-1 series compounds.

Contents
1 Introduction
2 Structural properties of TinO2n-1
3 Physicochemical properties of TinO2n-1
4 Preparation methods of TinO2n-1
4.1 High temperature sintering
4.2 Laser ablation
4.3 Sol-gel sintering
5 Application of TinO2n-1
5.1 Application of TinO2n-1 in noble electrodes
5.2 Application of TinO2n-1 in fuel cells
5.3 Application of TinO2n-1 in batteries
5.4 Application of TinO2n-1 in thermoelectric and photoelectric materials
5.5 Application of TinO2n-1 in photocatalytic degradation
[JP] 6 Conclusion and outlook

CLC Number: 

[1] Ni M, Leung M K, Leung D Y, Sumathy K. Renew. Sust. Energ. Rev., 2007, 11: 401.
[2] Fujishima A, Honda K. Nature, 1972, 238: 37.
[3] O’regan B, Grfitzeli M. Nature, 1991, 353: 737.
[4] Kumar S G, Devi L G. J. Phys. Chem. A, 2011, 115: 13211.
[5] Kwon D H, Kim K M, Jang J H, Jeon J M, Lee M H, Kim G H, Li X S, Park G S, Lee B, Han S W. Nat. Nanotech., 2010, 5: 148.
[6] Houlihan J, Mulay L. Mater. Res. Bull., 1971, 6: 737.
[7] Han W Q, Zhang Y. Appl. Phys. Lett., 2008, 92: 203117.
[8] Graves J E, Pletcher D, Clarke R L, Walsh F C. J. Appl. Electrochem., 1992, 22: 200.
[9] Bartholomew R F, Frankl D R. Phys. Rev., 1969, 187: 828.
[10] Smith J R, Walsh F C, Clarke R L. J. Appl. Electrochem., 1998, 28: 1021.
[11] Andersson S, Collen B, Kuylenstierna U, Magneli A. Acta. Chem. Scand., 1957, 11: 1641.
[12] Gusev A A, Avvakumov E G, Medvedev A, Masliy A I. Sci. Sinter., 2007, 39: 51.
[13] Walsh F C, Wills R G A. Electrochimica Acta, 2010, 55: 6342.
[14] Ioroi T, Senoh H, Yamazaki S, Siroma Z, Fujiwara N, Yasuda K. J. Electrochem. Soc., 2008, 155: B321.
[15] Clarke R L, Harnsberger S K. Am. Lab., 1988, 20: 8.
[16] Cass R B. US 07006119,1990.
[17] Hayfield P C S. Development of a New Material: Monolithic Ti4O7 Ebonex Ceramic. 1st ed. Cambridge: Royal Society of Chemistry. 2002.
[18] Regonini D, Adamaki V, Bowen C R, Pennock S R, Taylor J, Dent A C E. Solid State Ionics, 2012, 229: 38.
[19] 管东波(Guan D B),毛健(Mao J). 物理学报(Acta Physica Sinica), 2012, 61(1): 17102.
[20] Harada S, Tanaka K, Inui H. J. Appl. Phys., 2010, 108: 083703.
[21] Nguyen S T, Lee J M, Yang Y H, Wang X. Ind. Eng. Chem. Res., 2012, 51: 9966.
[22] Schlenker C, Buder R, Schlenker M, Houlihan J F, Mulay L N. Phys. Status Solidi B, 1972, 54: 247.
[23] Weissmann M, Weht R. Phys. Rev. B, 2011, 84: 144419.
[24] Watanabe M, Ueno W, Hayashi T. J. Lumin., 2007, 122: 393.
[25] Hayfield P C S. US 06293961,1983.
[26] Gusev A A, Avvakumov E G, Vinokurova O B. Sci. Sinter., 2003, 35: 141.
[27] Schlenker C, Buder R, Schlenker M, Houlihan J F, Mulay L N. Phys. Status Solidi B, 1972, 54: 247.
[28] Nagasawa K, Kato Y, Bando Y, Takada T. J. Phys. Soc. Jpn., 1970, 29: 241.
[29] Han W Q, Wang X L. Appl. Phys. Lett., 2010, 97: 243104.
[30] Kao W H, Patel P, Haberichter S L. Electrochem. Soc., 1997, 144: 1907.
[31] Graves J E, Pletcher D, Clarke R L, Walsh F C. J. Appl. Electrochem., 1991, 21: 848.
[32] Hayfield P C S, Hill A. Int. J. Restor. Build. Monum., 2000, 6: 647.
[33] Chen G Y, Bare S R, Mallouk T E. J. Electrochem. Soc., 2002, 149: A1092.
[34] Regonini D, Dent A C, Bowen C R, Pennock S R, Taylor J. Mater. Lett., 2011, 65: 3590.
[35] Watanabe M. Phys. Status Solidi C, 2009, 6: 260.
[36] Li X X, Zhu A L, Qu W, Wang H J, Hui R, Zhang L, Zhang J J. Electrochim. Acta, 2010, 55: 5891.
[37] Canillas M, Chinarro E, Carballo V M, Jurado J R, Moreno B. J. Mater. Chem. B, 2013, 1: 6459.
[38] Siracusano S, Baglio V, D’Urso C, Antonucci V, Aricò A S. Electrochim. Acta, 2009, 54: 6292.
[39] Kohlbrecka K, Przyluski J. Electrochim. Acta, 1994, 39: 1591.
[40] Tang C, Zhou D B, Zhang Q. Mater. Lett., 2012, 79: 42.
[41] Zhu R J, Liu Y, Ye J W, Zhang X Y. J. Mater. Sci. : Mater. Electron., 2013, 24: 4853.
[42] Sen W, Xu B Q, Yang B, Sun H Y, Song J X, Wan H L, Dai Y N. Trans. Nonferrous Met. Soc. China, 2011, 21: 185.
[43] Zhang X Y, Liu Y, Ye J W, Zhu R J. Micro. Nano. Lett., 2013, 8: 251.
[44] Adamaki V, Clemens F, Ragulis P, Pennock S R, Taylor J, Bowen C R. J. Mater. Chem. A, 2014, 2: 8328.
[45] Toyoda M, Yano T, Tryba B, Mozia S, Tsumura T, Inagaki M. Appl. Catal. B : Environ., 2009, 88: 160.
[46] Kitada A, Hasegawa G, Kobayashi Y, Kanamori K, Nakanishi K, Kageyama H. J. Am. Chem. Soc., 2012, 134: 10894.
[47] Hirasawa M, Seto T, Orii T, Aya N, Shimura H. Appl. Surf. Sci., 2002, 197: 661.
[48] Portehault D, Maneeratana V, Candolfi C, Oeschler N, Veremchuk I, Grin Y, Sanchez C, Shimura H. ACS Nano, 2011, 5: 9052.
[49] Maneeratana V, Portehault D, Chaste J, Mailly D, Antonietti M, Sanchez C. Adv. Mater., 2014, 26: 2654.
[50] Pang Q, Kundu D, Cuisinier M, Nazar L F. Nat. Commun., 2014, 5: 1.
[51] Przy?uski J, Kolbrecka K. J. Appl. Electrochem., 1993, 23: 1063.
[52] Kolbrecka K, Przyluski J. Electrochim. Acta, 1994, 39: 1591.
[53] Smith J R, Nahle A H, Walsh F C. J. Appl. Electrochem., 1997, 27: 815.
[54] Ohkoshi S I, Tsunobuchi Y, Matsuda T, Hashimoto K, Namai A, Hakoe F, Tokoro H. Nat. Chem., 2010, 2: 539.
[55] Shanmugam S, Gedanken A. Small, 2007, 3: 1189.
[56] Yan W F, Mahurin S M, Pan Z W, Overbury S H, Dai S. J. Am. Chem. Soc., 2005, 127: 10480.
[57] Shih C C, Chang J R. J. Catal., 2006, 240: 137.
[58] Song S D, Zhang H M, Ma X P, Shao Z G, Baker R T, Yi B L. Int. J. Hydrogen Energy, 2008, 33: 4955.
[59] McGregor K, Frazer E, Urban A, Pownceby M, Deutscher R. Development of Inert Anode Materials for Electrowinning in Chloride Melts. Clayton South: ECS, 2006. 930.
[60] Kasian O, Luk'yanenko T V, Demchenko P, Gladyshevskii R E, Amadelli R, Velichenko A B. Electrochim. Acta, 2013, 109: 630.
[61] Kasian O, Luk'yanenko T V, Amadelli R, Velichenko A. ECS Trans., 2014, 58: 75.
[62] Ras A H, Van S J F. J. Appl. Electrochem., 1999, 29: 313.
[63] Li X H, Pletcher D, Walsh F C. Chem. Soc. Rev., 2011, 40: 3879.
[64] Devilliers D, Dinh T M, Mahé E, Dauriac V, Lequeux N. J. Electroanal. Chem., 2004, 573: 227.
[65] Chen G, Betterton E A, Arnold R G. J. Appl. Electrochem., 1999, 29: 961.
[66] Krulik G A, Golden J H. US 09894527,2003.
[67] Bejan D, Malcolm J D, Morrison L, Bunce N J. Electrochim. Acta, 2009, 54: 5548.
[68] Scialdone O, Galia A, Filardo G. Electrochim. Acta, 2008, 53: 7220.
[69] La D?njevac U D?, Jovi D?B M, Jovi D?V D, Radmilovi D?V R, Krstaji D?N V. Int. J. Hydrogen Energy, 2013, 38: 10178.
[70] Slavcheva E, Nikolova V, Petkova T, Lefterova E, Dragieva I, Vitanov T, Budevski E. Electrochim. Acta, 2005, 50: 5444.
[71] Sherif S E, Bejan D, Bunce N J. Can. J. Chem., 2010, 88: 928.
[72] Bejan D, Guinea E, Bunce N J. Electrochim. Acta, 2012, 69: 275.
[73] Kasian O, Luk’yanenko T, Velichenko A. Anodes based on platinized Ebonex®. San Francisco: ECS, 2013. 2423.
[74] Velichenko A B, Kasian O I, Luk’yanenko T V, Amadelli R, Demchenko P Y, Gladyshevskii R E. Prot. Met. Phys. Chem. Surf., 2013, 49: 705.
[75] Roen L M, Paik C H, Jarvi T D. Electrochem. Solid-State Lett., 2004, 7: A19.
[76] Knights S D, Colbow K M, Pierre J S, Wilkinson D P. J. Power Sources, 2004, 127: 127.
[77] Reiser C A, Bregoli L, Patterson T W, Jung S Y, Yang J D, Perry M L, Jarvi T D. Electrochem. Solid-State Lett., 2005, 8: A273.
[78] Wang Y J, Wilkinson D P, Zhang J J. Chem. Rev., 2011, 111: 7625.
[79] Paunovi D?P, Popovski O, Fidan D?evska E, Ranguelov B, Stoevska G D, Dimitrov A T, Had?i J S. J. Int. J. Hydrogen Energy, 2010, 35: 10073.
[80] Rashkova V, Kitova S, Vitanov T. Electrochim. Acta, 2007, 52: 3794.
[81] Krstajic N V, Vracar L M, Neophytides S G, Jaksic J M, Murase K, Tunold R, Jaksic M M. J. New Mater. Electrochem. Syst., 2006, 9: 83.
[82] Knights S D, Taylor J L, Wilkinson D P, Wainwright D S. US 09585696, 2003.
[83] Knights S D, Taylor J L, Wilkinson D P, Campbell S A. US 10689876, 2003.
[84] May B, Hodgson D R. US 09805145,2004.
[85] Cerri I, Nagami T, Davies J, Mormiche C, Vecoven A, Hayden B. Int. J. Hydrogen Energy, 2012, 38: 640.
[86] Scott K, Cheng H. J. Appl. Electrochem., 2002, 32: 583.
[87] Vra D?ar L M, Krstaji D?N V, Radmilovi D?V R, Jakši?M M. J. Electroanal. Chem., 2006, 587: 99.
[88] Babi D?B, Gulicovski J, Gaji D?-Krstaji D?L J, Elezovi D?N, Radmilovi D?V R, Krstaji D?N V, Vra D?ar L M. J. Power Sources, 2009, 193: 99.
[89] Antolini E, Gonzalez E R. Solid State Ionics, 2009, 180: 746.
[90] Ioroi T, Siroma Z, Fujiwara N, Yamazaki S I, Yasuda K. Electrochem. Commun., 2005, 7: 183.
[91] Senevirathne K, Hui R, Campbell S, Ye S Y, Zhang J J. Electrochim. Acta, 2012, 59: 538.
[92] Hammer B, Nørskov J K. Adv. Catal., 2000, 45: 71.
[93] Liang Z X, Zhao T S, Xu J B, Zhu L D. Electrochim. Acta, 2009, 54: 2203.
[94] Tuseeva E K, Mayorova N A, Sosenkin V E, Nikol’skaya N F, Vol’fkovich Y M, Krestinin A V, Zvereva G I, Grinberg V A, Khazova O A. Russ. J. Electrochem., 2008, 44: 884.
[95] Tian H J, Ying H J, Han W Q. Carbon-coated Magnéli phases Ti4O7 as anodes in lithium-ion batteries. San Francisco: ECS, 2013. 606.
[96] Han W Q, Wang X L. Magnéli phase Ti<em>nO2n-1 nanobelts as anodes for hybrid electrochemical-cells. Montreal: ECS, 2011. 606.
[97] Tao X Y, Wang J G, Ying Z G, Cai Q X, Zheng G Y, Gan Y P, Huang H, Xia Y, Liang C, Zhang W K. Nano Lett., 2014, 14: 5288.
[98] Loyns A C, Hill A, Ellis K G, Partington T J, Hill J M. J. Power Sources, 2005, 144: 329.
[99] Krstajic N V, Vracar L M, Radmilovic V R, Neophytides S G, Labou M, Jaksic J M, Tunold R, Falaras P, Jaksic M M. Surf. Sci., 2007, 601: 1949.
[100] Escalante G I L, Duron T S M, Cruz J C, Arriaga H L G. J. New Mat. Electrochem. Sys., 2010, 13: 227.
[101] Luo Z G, Sang S B, Wu Q M, Liu S Y. ECS Electrochem. Lett., 2013, 2: A21.
[102] Lu Y, Hirohashi M, Sato K. Mater. Trans., 2006, 47: 1449.
[103] Lu Y, Matsuda Y, Sagara K, Hao L, Otomitsu T, Yoshida H. Adv. Mater. Res., 2012, 415: 1291.
[104] Radecka M, Trenczek Z A, Zakrzewska K, Rekas M. J. Power Sources, 2007, 173: 816.
[105] Ikezawa S, Homyara H, Kubota T, Suzuki R, Koh S, Mutuga F, Yoshioka T, Nishiwaki A, Ninomiya Y, Rekas M. Thin Solid Films, 2001, 386: 173.
[106] Li X Z, Li F B, Yang C L, Ge W K. J. Photochem. Photobiol A: Chem., 2001, 141: 209.
[107] Takeuchi M, Yamashita H, Matsuoka M, Anpo M, Hirao T, Itoh N, Iwamoto N. Catal. Lett., 2000, 67: 135.
[108] Marinkovski M, Paunovi D?P, Bla?evska G J, Na D?evski G. Adv. Nat. Sci. : Theo. Appl., 2012, 1: 215.
[109] Tsumura T, Hattori Y, Kaneko K, Hirose Y, Inagaki M, Toyoda M. Desalination, 2004, 169: 269.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[3] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[4] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[5] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[6] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[7] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[8] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[9] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[10] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[11] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[12] Zehao Hu, Ting Chen, Yanqiao Xu, Weihui Jiang, Zhixiang Xie. Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals [J]. Progress in Chemistry, 2021, 33(9): 1614-1626.
[13] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[14] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[15] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.