中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (4): 373-384 DOI: 10.7536/PC141020 Previous Articles   Next Articles

• Review and evaluation •

Polymer Hydrogels Based on Peptide Structure

Wang Jianwei, Song Lifeng, Zhao Jin*, Yuan Xubo   

  1. Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51103095).
PDF ( 3530 ) Cited
Export

EndNote

Ris

BibTeX

Peptides with good biocompatibility and biodegradability, bioactivity and self-assembly ability have received widespread attention. Self-assembly properties of peptides can provide hydrogel formation ability to polymers, and then not only controlling gel network construction but endowing polymer hydrogels with stimuli-responsibility and mechanical modulation properties. By use of peptides with special functionality, chemical crosslinked polymer hydrogels are endowed with cell-adhesive, enzyme-sensitive and antibacterial biofunctionalities. In addition, introducing network construct and structural control properties as well as functionalities of peptide into physical/chemical double crosslinked hydrogels simultaneously can not only turn a hydrogel into functional materials but also enhance the chemical crosslinked network through peptide self-assembly. In this review, we summarize the current achievements in the study of peptide self-assembled polymer hydrogels, peptide-functionalized chemical crosslinked polymer hydrogels and physical/chemical double crosslinked polymer hydrogels based on peptide. Finally, development prospects of such hydrogels are briefly predicted.

Contents
1 Introduction
2 Physical cross-linked hydrogels
2.1 Hydrogels based on coiled coil assembly
2.2 Hydrogels based on β-sheet assembly
2.3 Hydrogels based on triple helix assembly
3 Chemical cross-linked hydrogels
3.1 Cell-adhesive
3.2 Enzyme-degradation
3.3 Antibacterial property
3.4 Tissue-adhesive
4 Physical/chemical double cross-linked hydrogels
5 Conclusion

CLC Number: 

[1] Qiu Y, Park K. Adv. Drug. Deliver.Rev., 2001, 53(3): 321.
[2] Drury J L, Mooney D J. Biomaterials, 2003, 24(24): 4337.
[3] Tibbitt M W, Anseth K S. Biotechnol. Bioeng., 2009, 103(4): 655.
[4] Duarte A P, Coelho J F, Bordado J C, Cidade M T, Gil M H. Prog. Polym. Sci., 2012, 37(8): 1031.
[5] Bouten P J M, Zonjee M, Bender J, Yauw S T, van Goor H, van Hest J, Hoogenboom R. Prog. Polym. Sci., 2014,39(7):1375.
[6] Mohammed A, Miller A F, Saiani A. Macromol. Symp., 2007, 251:88.
[7] Kope D?ek J, Yang J. Acta Biomater., 2009, 5(3): 805.
[8] Kope D?ek J, Yang J. Angew. Chem. Int. Edit., 2012, 51(30): 7396.
[9] Hern D L, Hubbell J A. J. Biomed. Mater. Res., 1998, 39(2): 266.
[10] Petka W A, Harden J L, McGrath K P, Wirtz D, Tirrell D A. Science, 1998, 281(5375): 389.
[11] Xu C, Breedveld V, Kope D?ek J. Biomacromolecules, 2005, 6(3): 1739.
[12] Shen W, Zhang K, Kornfield J A, Tirrell D A. Nat. Mater., 2006, 5(2): 153.
[13] Pechar M, Kope D?ková P, Joss L, Kope D?ek J. Macromol. Biosci., 2002, 2(5): 199.
[14] Vandermeulen G W M, Tziatzios C, Klok H A. Macromolecules, 2003, 36(11): 4107.
[15] Vandermeulen G W M, Tziatzios C, Duncan R, Klok H A. Macromolecules, 2005, 38(3): 761.
[16] Jing P, Rudra J S, Herr A B, Collier J H. Biomacromolecules, 2008, 9(9):2438.
[17] Yang J, Xu C, Kope D?ková P, Kope D?ek J. Macromol. Biosci., 2006, 6(3): 201.
[18] Wu K, Yang J, Koňák D?, Kope D?ková P, Kope D?ek J. Macromol. Chem. Phys., 2008, 209(5): 467.
[19] Wang C, Stewart R J, Kope D?ek J. Nature, 1999, 397(6718): 417.
[20] Yang J, Xu C, Wang C, Kope D?ek J. Biomacromolecules, 2006, 7(4): 1187.
[21] Wu K, Liu J, Johnson R N, Yang J, Kope D?ek J. Angew. Chem., 2010, 122(8): 1493.
[22] Pechar M, Pola R, Laga R, Ulbrich K, Bednaárovaá L, Malon DňP, Sieglová I, Král V, Fábry M, Vaneák O. Biomacromolecules, 2011, 12(10): 3645.
[23] Wu K, Yang J, Liu J, Kope D?ek J. J. Control. Release, 2012, 157(1): 126.
[24] Kverka M, Hartley J M, Chu T W, Yang J, Heidchen R, Kope D?ek J. Biomaterials, 2014, 35(22): 5886.
[25] Deacon S P E, Apostolovic B, Carbajo R J, Schott A K, Beck K, Vicent M J, Pineda-Lucena A P, Klok H A, Duncan R. Biomacromolecules, 2010, 12(1): 19.
[26] Burkoth T S, Benzinger T L S, Urban V, Lynn D G, Meredith S C, Thiyagarajan P. J. Am. Chem. Soc., 1999, 121(32): 7429.
[27] Collier J H, Messersmith P B. Adv. Mater., 2004, 16(11): 907.
[28] Eckhardt D, Groenewolt M, Krause E, Börner H G. Chem. Commun., 2005, (22): 2814.
[29] Rathore O, Sogah D Y. J. Am. Chem. Soc., 2001, 123(22): 5231.
[30] Hentschel J, Krause E, Börner H G. J. Am. Chem. Soc., 2006, 128(24): 7722.
[31] Börner H G, Smarsly B M, Hentschel J, Rank A, Schubert R, Geng Y, Discher D E, Hellweg T, Brandt A. Macromolecules, 2008, 41(4): 1430.
[32] Radu L C, Yang J, Kope D?ek J. Macromol. Biosci., 2009, 9(1): 36.
[33] Radu-Wu L C, Yang J, Wu K, Kope D?ek J. Biomacromolecules, 2009, 10(8): 2319.
[34] Wu L C, Yang J, Kope D?ek J. Biomaterials, 2011, 32(23): 5341.
[35] Hartgerink J D, Beniash E, Stupp S I. Science, 2001, 294(5547): 1684.
[36] Elder A N, Dangelo N M, Kim S C, Washburn N R. Biomacromolecules, 2011, 12(7): 2610.
[37] Maslovskis A, Tirelli N, Saiani A, Miller A F. Soft Matter, 2011, 7(13): 6025.
[38] Stoica F, Alexander C, Tirelli N, Miller A F, Saiani A. Chem. Commun., 2008, (37): 4433.
[39] Maslovskis A, Guilbaud J B, Grillo I, Hodson N, Miller A F, Saiani A. Langmuir, 2014, 30(34):10471.
[40] Kar K, Amin P, Bryan M A, Persikov A V, Mohs A, Wang Y H, Brodsky B. J. Biol.Chem., 2006, 281(44): 33283.
[41] Koide T. Connect. Tissue Res., 2005, 46(3): 131.
[42] Kinberger G A, Cai W, Goodman M. J. Am. Chem. Soc., 2002, 124(51): 15162.
[43] Kinberger G A, Taulane J P, Goodman M. Tetrahedron, 2006, 62(22): 5280.
[44] Kojima C, Tsumura S, Harada A, Kono K. J. Am. Chem. Soc., 2009, 131(17): 6052.
[45] Suehiro T, Tada T, Waku T, Tanaka N, Hongo C, Yamamoto S, Nakahira A, Kojima C. Biopolymers, 2011, 95(4): 270.
[46] Kojima C, Suehiro T, Tada T, Sakamoto Y, Waku T, Tanaka N. Soft Matter, 2011, 7(19): 8991.
[47] Kojima C, Suehiro T. Chem. Lett., 2011, 40(11): 1249.
[48] Stahl P J, Romano N H, Wirtz D, Yu S M. Biomacromolecules, 2010, 11(9): 2336.
[49] Rubert Pérez C M, Panitch A, Chmielewski J A. Macromol. Biosci., 2011, 11(10): 1426.
[50] Perez C R, Rank L, Chmielewski J A. Chem. Commun., 2014, 50: 8174.
[51] Matsusaki M, Amekawa R, Matsumoto M, Tanaka Y, Kubota A, Nishida K, Akashi M. Adv. Mater., 2011, 23(26): 2957.
[52] Hersel U, Dahmen C, Kessler H. Biomaterials, 2003, 24(24): 4385.
[53] Shu X Z, Ghosh K, Liu Y, Palumbo F S, Luo Y, Clark R A, Prestwich G D. J. Biomed. Mater. Res. A, 2004, 68(2): 365.
[54] Park Y D, Tirelli N, Hubbell J A. Biomaterials, 2003, 24(6): 893.
[55] Schmedlen R H, Masters K S, West J L. Biomaterials, 2002, 23(22): 4325.
[56] Mann B K, Gobin A S,Tsai A T, Schmedlen R H, West J L. Biomaterials, 2001, 22(22): 3045.
[57] Burdick J A, Anseth K S. Biomaterials, 2002, 23(22): 4315.
[58] Zhu J, Beamish J A, Tang C, Kottke-Marchant K, Marchant R E. Macromolecules, 2006, 39(4): 1305.
[59] Liu S Q, Tian Q, Wang L, Hedrick J L, Hui J H P, Yang Y Y, Ee P L R. Macromol. Rapid. Commun., 2010, 31(13): 1148.
[60] Yang F, Williams C G, Wang D A, Lee H, Manson P N, Elisseeff J. Biomaterials, 2005, 26(30): 5991.
[61] Wang L S, Lee F, Lim J, Du C, Wan A C, Lee S S, Kurisawa M. Acta Biomater., 2014, 10(6): 2539.
[62] Zhu J. Biomaterials, 2010, 31(17): 4639.
[63] Patterson J, Hubbell J A. Biomaterials, 2010, 31(30): 7836.
[64] Lévesque S G, Shoichet M S. Bioconjugate. Chem., 2007, 18(3): 874.
[65] Fonseca K B, Bidarra S J, Oliveira M J, Granja P L, Barrias C C. Acta Biomater., 2011, 7(4): 1674.
[66] Su J, Wall S T, Healy K E, Wildsoet C F. Tissue. Eng. A, 2009, 16(3): 905.
[67] Feng Q, Zhu M, Wei K, Bian L. PloS One, 2014, 9(6): 0099587.
[68] Jo Y S, Rizzi S C, Ehrbar M, Weber F E, Hubbell J A, Lutolf M P. J. Biomed. Mater. Res. A, 2010, 93(3): 870.
[69] Aimetti A A, Tibbitt M W, Anseth K S. Biomacromolecules, 2009, 10(6): 1484.
[70] Zhou C, Li P, Qi X, Sharif A R M, Poon Y F, Cao Y, Chang M W, Leong S S J, Chan-Park M B. Biomaterials, 2011, 32(11): 2704.
[71] Song A, Rane A A, Christman K L.Acta Biomaterialia, 2012, 8(1): 41.
[72] Cleophas R T C, Sjollema J, Busscher H J, Kruijtzer J A, Liskamp R M. Biomacromolecules, 2014,15(9):3390.
[73] Cleophas R T C, Riool M, Quarles van Ufford H L C, Zaat S A, Kruijtzer J A, Liskamp R M. ACS Macro Lett., 2014, 3: 477.
[74] Zhou Y, Nie W, Zhao J, Yuan X. J. Mater. Sci.: Mater. Med., 2013, 24(10): 2277.
[75] Nie W, Yuan X , Zhao J, Zhou Y, Bao H. Carbohydr. Polym., 2013, 96(1): 342.
[76] Liu B, Lewis A K, Shen W. Biomacromolecules, 2009, 10(12): 3182.
[77] Yao M H, Yang J, Du M S, Song J T, Yu Y, Chen W,Zhao Y D, Liu B. J. Mater. Chem. B, 2014, 2(20): 3123.
[78] Betancourt T, Pardo J, Soo K, Soo K, Peppas N A. J. Biomed.Mater. Res. A, 2010, 93(1): 175.
[79] Lee H J, Lee J S, Chansakul T, Yu C, Elisseeff J H, Yu S M. Biomaterials, 2006, 27(30): 5268.
[80] Lee H J, Yu C, Chansakul T, Hwang N S, Varghese S, Yu S M, Elisseeff J H. Tissue. Eng. A, 2008, 14(11): 1843
[81] Ryan D M, Nilsson B L. Polym. Chem., 2012, 3(1): 18.
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[4] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[5] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[6] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[7] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[8] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[9] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[10] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[11] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[12] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[13] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[14] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[15] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.