中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (4): 336-348 DOI: 10.7536/PC141010 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review and evaluation •

SiOx(0<x≤2) Based Anode Materials for Lithium-Ion Batteries

Liu Xin1, Zhao Hailei*1,3, Xie Jingying*2,4, Lv Pengpeng1, Wang Ke2, Cui Jiajia4   

  1. 1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2. Shanghai Institute of Space Power Sources, Shanghai 200245, China;
    3. Beijing Key Lab of New Energy Materials and Technology, Beijing 100083, China;
    4. Shanghai Engineering Center for Power and Energy Storage Systems, Shanghai 200245, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Key Basic Research Program of China (973 Program)(No. 2013CB934003), the National Natural Science Foundation of China (No. 21273019), the National High Technology Research and Development Program of China (863 Program)(No. 2013AA050902) , the Shanghai Science and Technology Talent Project Funds (No.12XD1421900), and the Shanghai Science and Technology Development Funds (No. 12dz1200503,13dz2280200).
PDF ( 3200 ) Cited
Export

EndNote

Ris

BibTeX

With rapidly growing application of lithium-ion batteries in electric vehicles and renewable energy storage, there is an increasing demand on high performance batteries in terms of energy density and power density. For anode materials, the traditional graphitized carbon materials cannot meet these requirements, novel high-capacity anode materials are being widely investigated, including Si-based materials. Among them, SiOx is considered to be a promising anode material for the practical use because it can deliver a high capacity and at the same time produce relatively lower volume change upon cycling compared to pure silicon. This paper summarizes the published works on SiOx-based anode materials. The basic electrochemical performance, structure model, electrochemical reaction mechanism and synthesis methods of SiOx powders are systematically reviewed. Methods used to improve electrochemical performance are classified and introduced, emphasized on those of SiO and amorphous SiO2. These works suggested that the oxygen content, disproportionation level and surface state of SiOx have significant influence on the electrochemical performance of SiOx. The interface clusters mixture (ICM) structural model can be used to better understand the nature of the electrochemical reaction processes of SiOx. Introduction of second phase (carbon, metals, metal oxides, etc.), preparation of porous structure, surface modification and optimization of binder and electrolyte are proved to be effective methods to improve the coulombic efficiency and cycling performance of SiOx electrode. Batteries with optimized SiOx-based material showed good cycling stability with 90% capacity retention after 600 cycles. SiOx-based composite is one of the best promising anode materials for lithium-ion batteries with high energy density.

Contents
1 Introduction
2 Properties of SiOx material
2.1 Basic electrochemical performance
2.2 Structure
2.3 Mechanism of the electrochemical process
2.4 Synthesis methods
3 SiOx-based materials
3.1 Compositing with second phase
3.2 Porous structured SiOx
3.3 Surface modification
3.4 Other factors and issues
4 Conclusion and outlook

CLC Number: 

[1] Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135: 1167.
[2] Li Y, Song J, Yang J. Renew. Sust. Energ. Rev., 2014, 37: 627.
[3] Zhang W J. J. Power Sources, 2011, 196: 13.
[4] Park C M, Kim J H, Kim H, Sohn H J. Chem. Soc. Rev., 2010, 39: 3115.
[5] Zamfir M R, Nguyen H T, Moyen E, Lee Y H, Pribat D. J. Mater. Chem. A, 2013, 1: 9566.
[6] McDowell M T, Ryu I, Lee S W, Wang C, Nix W D, Cui Y. Adv. Mater., 2012, 24: 6034.
[7] Hovington P, Dontigny M, Guerfi A, Trottier J, Lagace M, Mauger A, Julien C M, Zaghib K. J. Power Sources, 2014, 248: 457.
[8] Zhou X, Yin Y X, Wan L J, Guo Y G. Chem. Commun., 2012, 48: 2198.
[9] Wu H, Cui Y. Nano Today, 2012, 7: 414.
[10] Liang B, Liu Y, Xu Y. J. Power Sources, 2014, 267: 469.
[11] Szczech J R, Jin S. Energy Environ. Sci., 2011, 4: 56.
[12] [2014-09-01].http://china.nikkeibp.com.cn/news/elec/51881-20100611.html.
[13] [2014-09-01].http://china.nikkeibp.com.cn/news/elec/68165-20131022.html?ref=ML.
[14] 全威 (Quan W). 内蒙古科技与经济 (Inner Mongolia Science Technology & Economy), 2013, 283: 86.
[15] 文钟晟 (Wen Z C), 王可 (Wang K), 解晶莹 (Xie J Y), 杨军 (Yang J). 电源技术 (Chinese Journal of Power Sources), 2004, 28: 719.
[16] Idota Y, Mineo Y, Matsufuji A, Miyasaki T. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1997, 65: 717.
[17] 福冈宏问(Fukuoka H), 荒又干夫(Aramata M), 宫脇悟(Miyawaki S). CN 101139095-A, 2008.
[18] 木崎信吾(Kizaki S). CN 102460784-A, 2012.
[19] 金德炫(Kim D H), 金载明(Kim J M), 朱圭湳(Joo K N), 金泰植(Joo K N). CN 103094538-A, 2013.
[20] Yang J, Takeda Y, Imanishi N, Capiglia C, Xie J Y, Yamamoto O. Solid State Ionics, 2002, 152/153: 125.
[21] Kim M K, Jang B Y, Lee J S, Kim J S, Nahm S. J. Power Sources, 2013, 244: 115.
[22] Takezawa H, Iwamoto K, Ito S, Yoshizawa H. J. Power Sources, 2013, 244: 149.
[24] Kim J H, Park C M, Kim H, Kim Y J, Sohn H J. J. Electroanal. Chem., 2011, 661: 245.
[25] Santos-Pena J, Sanchez L, Cruz-Yusta M. Appl. Phys. Lett., 2006, 89: 093125.
[26] 梁英 (Liang Y), 张勇 (Zhang Y), 田志高 (Tian Z G), 贾志杰 (Jia Z J). 电源技术 (Chinese Journal of Power Sources), 2008, 32: 841.
[27] Hasanaly S M, Mat A, Sulaiman K S. Ionics, 2005, 11: 393.
[28] Yang Y, Peng W J, Guo H J, Wang Z X, Li X H, Zhou Y Y, Liu Y J. Trans. Nonferrous Met. Soc. China, 2007, 17: 1339.
[29] Omanda H, Brousse T, Marhic C, Schleich D M. J. Electrochem. Soc., 2004, 151: A922.
[30] Gao B, Sinha S, Fleming L, Zhou O. Adv. Mater., 2001, 13: 816.
[31] Sun Q, Zhang B, Fu Z W. Appl. Sur. Sci., 2008, 254: 3774.
[32] Sasidharan M, Liu D, Gunawardhana N, Yoshio M, Nakashima K. J. Mater. Chem., 2011, 21: 13881.
[33] Yan N, Wang F, Zhong H, Li Y, Wang Y, Hu L, Chen Q. Sci. Rep., 2013, 3: 1568.
[34] Guo B, Shu J, Wang Z, Yang H, Shi L, Liu Y, Chen L. Electrochem. Commun., 2008, 10: 1876.
[35] Yao Y, Zhang J, Xue L, Huang T, Yu A. J. Power Sources, 2011, 196: 10240.
[36] Lv P, Zhao H, Wang J, Liu X, Zhang T, Xia Q. J. Power Sources, 2013, 237: 291.
[37] Yamamura H, Nobuhara K, Nakanishi S, Iba H, Okada S. J. Ceram. Soc. Jpn., 2011, 119: 855.
[38] Chang W S, Park C M, Kim J H, Kim U Y, Jeong G, Sohn H J. Energy Environ. Sci., 2012, 5: 6895.
[39] Temkin R J. J. Non-Cryst. Solids, 1975, 17: 215.
[40] Brady G W. J. Phys. Chem. , 1959, 63: 1119.
[41] Nagao Y, Sakaguchi H, Honda H, Fukunaga T, Esaka T. J. Electrochem. Soc., 2004, 151: 1572.
[42] Friede B, Jansen M. J. Non-Cryst. Solids, 1996, 204: 202.
[43] Sepehri-Amin H, Ohkubo T, Kodzuka M, Yamamura H, Saito T, Iba H, Hono K. Scr. Mater., 2013, 69: 92.
[44] Nakamura M, Mochizuki Y, Usami K, Itoh Y, Nozaki T. Solid State Commun., 1984, 50: 1079.
[45] Senemaud C, Costa-Lima M T, Roger J A, Cachard A. Chem. Phys. Lett., 1974, 26: 431.
[46] Hohl A, Wieder T, Aken P A, Weirich T E, Denninger G, Vidal M, Oswald S, Deneke C, Mayer J, Fuess H. J. Non-Cryst. Solids, 2003, 320: 255.
[47] Schulmeister K, Mader W. J. Non-Cryst. Solids, 2003, 320: 143.
[48] Morita T, Takami Norio. J. Electrochem. Soc., 2006, 153: 425.
[49] Miyuki T, Okuyama Y, Sakamoto T, Eda Yusuke, Kojima T, Sakai T. Electrochemistry, 2012, 80: 401.
[50] Park C M, Choi W, Hwa Y, Kim J H, Jeong G, Sohn H J. J. Mater. Chem., 2010, 20: 4854.
[51] Hwa Y, Park C M, Sohn H J. J. Power Sources, 2013, 222: 129.
[52] Yu B C, Hwa Y, Kim J H, Sohn H J. Electrochim. Acta, 2014, 117: 426.
[53] 木崎信吾(Kizaki S), 菅野英明(Kanno H). CN 102484248-A, 2012.
[54] 菅野英明(Kanno H), 木崎信吾(Kizaki S). CN 102576868-A, 2012.
[55] Kim K, Park J H, Doo S G, Kim T. Thin Solid Films, 2010, 518: 6547.
[56] Homma K, Kambara M, Yoshida T. Sci. Technol. Adv. Mater., 2014, 15: 025006.
[57] Nagao Y, Sakaguchi H, Honda H, Fukunaga T, Esaka T. J. Electrochem. Soc., 2004, 151: A1572.
[58] Yu B C, Hwa Y, Kim J H, Sohn H J. Electrochim. Acta, 2014, 117: 426.
[59] Miyachi M, Yamamoto H, Kawai H, Ohta T, Shirakata M. J. Electrochem. Soc., 2005, 152: A2089.
[60] Miyachi M, Yamamoto H, Kawai H. J. Electrochem. Soc., 2007, 154: A376.
[61] Yamada Y, Iriyama Y, Abe T, Ogumi Z. J. Electrochem. Soc., 2010, 157: A26.
[62] Lee K J, Yoon W Y, Kim B K. J. Electrochem. Soc., 2014, 161: A927.
[63] Ban C, Kappes B B, Xu Q, Engtrakul C, Ciobanu C V, Dillon A C, Zhao Y. Appl. Phys. Lett., 2012, 100: 243905.
[64] Winter M, Wrodnigg G H, Besenhard J O, Biberacher W, Novák P. J. Electrochem. Soc., 2000, 147: 2427.
[65] Terranova M L, Orlanducci S, Tamburri E, Guglie-Jmotti V, Rossi M. J. Power Sources, 2014, 246: 167.
[66] Wang J, Zhao H, He J, Wang C, Wang J. J. Power Sources, 2011, 196: 4811.
[67] Park M S, Park E, Lee J, Jeong G, Kim K J, Kim J H, Kim Y J, Kim H. ACS Appl. Mater. Interfaces, 2014, 6: 9608.
[68] Guo C, Wang D, Liu T, Zhu J, Lang X. J. Mater. Chem. A, 2014, 2: 3521.
[69] Jung M J, Sheem K Y, Lee Y S. J. Nanosci. Nanotechnol., 2014, 14: 2852.
[70] Nguyen D T, Nguyen C C, Kim J S, Kim J Y, Song S W. ACS Appl. Mater. Interfaces, 2013, 5: 11234.
[71] Kim J H, Sohn H J, Kim H, Jeong G, Choi W. J. Power Sources, 2007, 170: 456.
[72] Kobayashi Y, Seki S, Mita Y, Ohno Y, Miyashiro H, Charest P, Guerfi A, Zaghib K. J. Power Sources, 2008, 185: 542.
[73] 任玉荣 (Ren Y R), 瞿美臻 (Qu M Z), 于作龙 (Yu Z L). 中国科学 B辑: 化学 (Science China Chemistry), 2009, 39: 1593.
[74] Liu W R, Yen Y C, Wu H C, Winter M, Wu N L. J. Appl. Electrochem., 2009, 39: 1643.
[75] Lu Z, Zhang L, Liu X. J. Power Sources, 2010, 195: 4304.
[76] Si Q, Hanai K, Ichikawa T, Phillipps M B, Hirano A, Imanishi N, Yamamoto O, Takeda Y. J. Power Sources, 2011, 196: 9774.
[77] Choi I, Lee M J, Oh S M, Kim J J. Electrochim. Acta, 2012, 85: 369.
[78] Ren Y, Ding J, Yuan N, Jia S, Qu M, Yu Z. J. Solid State Electrochem., 2012, 16: 1453.
[79] Guo C, Wang D, Wang Q, Wang B, Liu T. Int. J. Electrochem. Sci., 2012, 7: 8745.
[80] Lee D J, Ryou M H, Lee J N, Kim B G, Lee Y M, Kim H W, Kong B S, Park J K, Choi J W. Electrochem. Commun., 2013, 34: 98.
[81] 王洁 (Wang J), 侯贤华 (Hou X H), 李敏 (Li M), 张苗(Zhang M), 胡社军 (Hu S J). 电池工业 (Chinese Battery Industry), 2013, 18: 147.
[82] Cheon J H, Jang B Y, Kim J S, Lee J S. J. Korean Phys. Soc., 2013, 62: 1119.
[83] Doh C H, Park C W, Shin H M, Kim D H, Chung Y D, Moon S I, Jin B S, Kim H S, Veluchamy A. J. Power Sources, 2008, 179: 367.
[84] Doh C H, Shin H M, Kim D H, Ha Y C, Jin B S, Kim H S, Moon S I, Veluchamy A. Electrochem. Commun., 2008, 10: 233.
[85] Yuge R, Toda A, Fukatsu K, Tamura N, Manako T, Nakahara K, Nakano K. J. Electrochem. Soc., 2013, 160: A1789.
[86] Chao Y J, Yuan X, Ma Z F. Electrochim. Acta, 2008, 53: 3468.
[87] Yamada M, Ueda A, Matsumoto K, Ohzuku T. J. Electrochem. Soc., 2011, 158: A417.
[88] 余德馨 (Yu D X), 杨学林 (Yang X L), 石长川 (Shi C C), 张鹏昌 (Zhang P C). 三峡大学学报(自然科学版)(Journal of China Three Gorges Univeristy (Natural Sciences)), 2011, 33: 80.
[89] 石长川 (Shi C C), 杨学林 (Yang X L), 张露露 (Zhang L L), 周永涛 (Zhou Y T), 温兆银 (Wen Z Y). 无机材料学报 (Journal of Inorganic Materials), 2013, 28: 943.
[90] Kim K W, Park H, Lee J G, Kim J, Kim Y U, Ryu J H, Kim J J, Oh S M. Electrochim. Acta, 2013, 103: 226.
[91] Prak J, Park S S, Won Y S. Electrochim. Acta, 2013, 107: 467.
[92] Yamada M, Uchitomi K, Ueda A, Matsumoto K, Ohzuku T. J. Power Sources, 2013, 225: 221.
[93] Kajita T, Yuge R, Nakahara K, Iriyama J, Takahashi H, Kasahara R, Numata T, Serizawa S, Utsugi K. J. Electrochem. Soc., 2013, 160: A1806.
[94] Kajita T, Yuge R, Nakahara K, Iriyama J, Takahashi H, Kasahara R, Numata T, Serizawa S, Utsugi K. J. Electrochem. Soc., 2014, 161: A708.
[95] Miyuki T, Okuyama Y, Kojima T, Sakai T. Electrochemistry, 2012, 80: 405.
[96] Yang X, Wen Z, Xu X, Lin B, Huang S. J. Power Sources, 2007, 164: 880.
[97] Yang X, Wen Z, Zhang L, You M. J. Alloys Compds., 2008, 464: 265.
[98] Wang X, Wen Z, Liu Y, Wu X. Electrochim. Acta, 2009, 54: 4662.
[99] Wang X, Wen Z, Liu Y, Huang Y, Wen T L. Solid State Ionics, 2011, 192: 330.
[100] Seong I W, Kim K T, Yoon W Y. J. Power Sources, 2009, 189: 511.
[101] Feng X, Yang J, Yu X, Wang J, Nuli Y. J. Solid State Electrochem. 2013, 17: 2461.
[102] Lee H Y, Lee S M. Electrochem. Commun., 2004, 6: 465.
[103] Jeong G J, Kim Y U, Krachkovskiy S A, Lee C K. Chem. Mater., 2010, 22: 5570.
[104] Morimoto H, Tatsumisago M, Minami T. Electrochem. Solid-State Lett., 2001, 4: A16.
[105] 黄可龙 (Huang K L), 赵薇 (Zhao W), 刘素琴 (Liu S Q). 无机化学学报 (Chinese Journal of Inorganic Chemistry), 2007, 23: 1644.
[106] Jeong G, Kim J H, Kim Y U, Kim Y J. J. Mater. Chem., 2012, 22: 7999.
[107] Yamamura H, Nakanishi S, Iba H. J. Power Sources, 2013, 232: 264.
[108] Morimoto H, Sudo T, Wantnabe H, Tobishima S I. Electrochemistry, 2012, 80: 812.
[109] Zhou M, Gordin M L, Chen S, Xu T, Song J, Lv D, Wang D. Electrochem. Communs., 2013, 28: 79.
[110] Veluchamy A, Doh C H, Kim D H, Lee J H, Lee D J, Ha K H, Shin H M, Jin B S, Kim H S, Moon S I, Park C W. J. Power Sources, 2009, 188: 574.
[111] Zhang L, Deng J, Liu L, Si W, Oswald S, Xi L, Kundu M, Ma G, Gemming T, Baunack S, Ding F, Yan C, Schmidt O G. Adv. Mater., 2014, 26: 4527.
[112] Liu B, Abouimrane A, Ren Y, Balasubramanian M, Wang D, Fang Z Z, Amine K. Chem. Mater., 2012, 24: 4653.
[113] Liu B, Abouimrane A, Brown D E, Zhang X, Ren Y, Fang Z Z, Amine K. J. Mater. Chem. A, 2013, 1: 4376.
[114] Liu B, Abouimrane A, Ren Y, Neuefeind J, Fang Z Z, Amine K. J. Electrochem. Soc., 2013, 160: A882.
[115] Ferguson P P, Martine M L, George A E, Dahn J R. J. Power Sources, 2000, 194: 794.
[116] Liu Y, Yang J, Imanishi N, Hirano A, Takeda Y, Yamamoto O. J. Power Sources, 2005, 146: 376.
[117] Doh C H, Veluchamy A, Lee D J, Lee H J, Jin B S, Moon S I, Park C W, Kim D W. Bull. Korean Chem. Soc., 2010, 31: 1257.
[118] 陈丽 (Chen L), 张宁 (Zhang N), 高立军 (Gao L J). 南昌大学学报(理科版) (Journal of Nanchang University (Natural Science)), 2011, 35: 228.
[119] Zhang T, Gao J, Zhang H P, Yang L C, Wu Y P, Wu H Q. Electrochem. Commun., 2007, 9: 886.
[120] Lee J I, Lee K T, Cho J, Kim J, Choi N S, Park S. Angew. Chem., 2012, 124: 2821.
[121] Lee J I, Park S. Nano Energy, 2013, 2: 146.
[122] Xing A, Zhang J, Bao Z, Mei Y, Gordin A S, Sandhage K H. Chem. Commun., 2013, 46: 6743.
[123] Feng X, Yang J, Lu Q, Wang J, Nuli Y. Phys. Chem. Chem. Phys., 2013, 15: 14420.
[124] Hwang S W, Lee K J, Yoon W Y. J. Power Sources, 2013, 244: 620.
[125] Guerfi A, Charest P, Dontigny M, Trottier J, Lagace M, Hovington P, Vijh A, Zaghib K. J. Power Sources, 2011, 196: 5667.
[126] Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K. J. Phys. Chem. C, 2011, 115: 13487.
[127] 刘欣 (Liu X), 赵海雷 (Zhao H L), 解晶莹 (Xie J Y), 汤卫平 (Tang W P), 潘延林 (Pan Y L), 丰震河 (Feng Z H). 化学进展 (Progress in Chemistry), 2013, 25: 1401.
[128] Nguyen C C, Choi H, Song S W. J. Electrochem. Soc., 2013, 160: A906.
[129] Song J W, Nguyen C C, Song S W. RSC Adv., 2012, 2: 2003.
[1] Guohui Zhu, Hongxian Huan, Dawei Yu, Xueyi Guo, Qinghua Tian. Selective Recovery of Lithium from Spent Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(2): 287-301.
[2] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[3] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[4] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[5] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[6] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[7] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[8] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[9] Tianyong Zhang, Wei Wu, Jian Zhu, Bin Li, Shuang Jiang. Stretchable Conductive Polymer Composites Prepared with Nano-Carbon Fillers [J]. Progress in Chemistry, 2021, 33(3): 417-425.
[10] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[11] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[12] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[13] Jingjing Xiao, Mu Wang, Weijie Zhang, Xiuying Zhao, Anchao Feng, Liqun Zhang. Preparation and Application of Lead Halide Perovskite-Polymer Composites [J]. Progress in Chemistry, 2021, 33(10): 1731-1740.
[14] Hang Jia, Yue Qiao, Yu Zhang, Qingxin Meng, Cheng Liu, Xigao Jian. Interface Modification Strategy of Basalt Fiber Reinforced Resin Matrix Composites [J]. Progress in Chemistry, 2020, 32(9): 1307-1315.
[15] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.