中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (1): 11-26 DOI: 10.7536/PC140942 Previous Articles   Next Articles

• Review •

Glucose-Responsive Synthetic Closed-Loop Insulin Delivery Systems

Zhang Yuqi1,2,3,4, Yu Jicheng1,2, Shen Qundong4, Gu Zhen*1,2   

  1. 1. Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, NC 27695, USA;
    2. Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA;
    3. Kuangyaming Honors School, Nanjing University, Nanjing 210093, China;
    4. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the Junior Faculty Award of American Diabetes Association (No. 1-14-JF-29).

PDF ( 1892 ) Cited
Export

EndNote

Ris

BibTeX

Diabetes mellitus has become a major social health problem affecting all of the world. The key to efficiently treating type Ⅰ and advanced type Ⅱ diabetes is to inject insulin with a precise dose according to the blood glucose levels (BGLs). Thus, smart insulin delivery systems responding to glucose concentration of the surroundings have attracted extensive interest these years. This review mainly focuses on chemically controlled closed-loop insulin delivery able to mimic pancreas activity. One of the greatest advantages of these systems is to regulate insulin dosage and delivery by BGLs on an automated and continuous basis. So called this feedback-controlled insulin delivery system ‘artificial pancreas’. Strategies to achieve this ‘artificial pancreas’ are through glucose-responsive insulin delivery systems, typically based on the glucose-sensing elements of glucose oxidase (GOx), glucose binding protein (GBP), or phenylboronic acid (PBA). Main mechanisms and most recent studies are discussed in this review.

Contents
1 Introduction
2 Glucose oxidase based system
2.1 Swelling/shrinking mechanisms
2.2 Disassembling/degradation mechanisms
3 Glucose binding proteins based system
4 Phenylboronic acid moieties based system
4.1 Swelling/shrinking mechanisms
4.2 Glucose replacement mechanisms
4.3 Disassembling/degradation mechanisms
4.4 Other mechanisms
5 Conclusion and outlook

CLC Number: 

[1] Atlas I D. International Diabetes Federation.Brussels. 2013. 160.
[2] Guariguata L, Whiting D, Hambleton I, Beagley J, Linnenkamp U, Shaw J. Diabetes Research and Clinical Practice, 2014, 103: 137.
[3] Mo R, Jiang T, Di J, Tai W, Gu Z. Chemical Society Reviews, 2014, 43: 3595.
[4] Banting F G, Best C H. The Indian Journal of Medical Research, 2007, 125: 251.
[5] Diabete Control and Complications Trial Research Group. New England Journal of Medicine, 1995, 329: 977.
[6] Kahn C. Diabetes, 1994, 43: 1066.
[7] Owens D R, Zinman B, Bolli G B. The Lancet, 2001, 358: 739.
[8] Ravaine V, Ancla C, Catargi B. Journal of Controlled Release, 2008, 132: 2.
[9] Lu Y, Sun W J, Gu Z. Journal of Controlled Release, 2014, 194: 1.
[10] Bratlie K M, York R L, Invernale M A, Langer R, Anderson D G. Advanced Healthcare Materials, 2012, 1: 267.
[11] Bankar S B, Bule M V, Singhal R S, Ananthanarayan L. Biotechnology Advances, 2009, 27: 489.
[12] Ishihara K, Kobayashi M, Ishimaru N, Shinohara I. Polymer Journal, 1984, 16: 625.
[13] Hassan C M, Doyle F J, Peppas N A. Macromolecules, 1997, 30: 6166.
[14] Albin G, Horbett T A, Ratner B D. Journal of Controlled Release, 1985, 2: 153.
[15] Kang S I, Bae Y H. Journal of Controlled Release, 2002, 80: 145.
[16] Kang S I, Bae Y H. Journal of Controlled Release, 2003, 86: 115.
[17] Rauf S, Ihsan A, Akhtar K, Ghauri M, Rahman M, Anwar M, Khalid A. Journal of Biotechnology, 2006, 121: 351.
[18] 朱颖(Zhu Y), 郑梁元(Zheng L Y). 中国药学杂志(Chinese Pharmaceutical Journal), 2005, 40: 331.
[19] Podual K, Doyle F, Peppas N. Polymer, 2000, 41: 3975.
[20] Podual K, Doyle F J, Peppas N A. Biomaterials, 2000, 21: 1439.
[21] Podual K, Doyle F J, Peppas N A. Journal of Controlled Release, 2000, 67: 9.
[22] Guiseppi-Elie A, Brahim S I, Narinesingh D. Advanced Materials, 2002, 14: 743.
[23] Jung D Y, Magda J J, Han I S. Macromolecules, 2000, 33: 3332.
[24] Satish C, Shivakumar H. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2007, 44: 379.
[25] Chu L Y, Li Y, Zhu J H, Wang H D, Liang Y J. Journal of Controlled Release, 2004, 97: 43.
[26] Abdekhodaie M, Wu X. Journal of Membrane Science, 2009, 335: 21.
[27] Iwata H, Matsuda T. Journal of Membrane Science, 1988, 38: 185.
[28] Cartier S, Horbett T, Ratner B. Journal of Membrane Science, 1995, 106: 17.
[29] Ito Y, Casolaro M, Kono K, Imanishi Y. Journal of Controlled Release, 1989, 10: 195.
[30] Qiu Y, Park K. Advanced Drug Delivery Reviews, 2012, 64: 49.
[31] Zhang K, Wu X Y. Journal of Controlled Release, 2002, 80: 169.
[32] Gordijo C R, Koulajian K, Shuhendler A J, Bonifacio L D, Huang H Y, Chiang S, Ozin G A, Giacca A, Wu X Y. Advanced Functional Materials, 2011, 21: 73.
[33] Gordijo C R, Shuhendler A J, Wu X Y. Advanced Functional Materials, 2010, 20: 1404.
[34] Gu Z, Dang T T, Ma M, Tang B C, Cheng H, Jiang S, Dong Y, Zhang Y, Anderson D G. ACS Nano, 2013, 7: 6758.
[35] Kim C K, Im E B, Lim S J, Oh Y K, Han S K. International Journal of Pharmaceutics, 1994, 101: 191.
[36] Kim A, Yun M O, Oh Y K, Ahn W S, Kim C K. International Journal of Pharmaceutics, 1999, 180: 75.
[37] Jain S, Amit K, Chalasani K, Jain A, Chourasia M, Jain A, Jain N. Journal of Drug Delivery Science and Technology, 2007, 17: 399.
[38] Jo S M, Lee H Y, Kim J C. International Journal of Biological Macromolecules, 2009, 45: 421.
[39] Uchiyama T, Kiritoshi Y, Watanabe J, Ishihara K. Biomaterials, 2003, 24: 5183.
[40] Uchiyama T, Watanabe J, Ishihara K. Journal of Biomaterials Science, Polymer Edition, 2004, 15: 1237.
[41] Kaczmarek H, Kamińska A, S ' wiatek M, Rabek J. Die Angewandte Makromolekulare Chemie, 1998, 261: 109.
[42] Kaczmarek H, Lindén L, Rabek J. Journal of Polymer Science Part A: Polymer Chemistry, 1995, 33: 879.
[43] Mai C, Majcherczyk A, Schormann W, Hüttermann A. Polymer Degradation and Stability, 2002, 75: 107.
[44] Qi W, Yan X, Duan L, Cui Y, Yang Y, Li J. Biomacromolecules, 2009, 10: 1212.
[45] Zhao W, Zhang H, He Q, Li Y, Gu J, Li L, Li H, Shi J. Chem. Commun., 2011, 47: 9459.
[46] Gu Z, Aimetti A A, Wang Q, Dang T T, Zhang Y, Veiseh O, Cheng H, Langer R S, Anderson D G. ACS Nano, 2013, 7: 4194.
[47] Tai W, Mo R, Di J, Subramanian V, Gu X, Buse J B, Gu Z. Biomacromolecules, 2014,15(10): 3495.
[48] Sharon N, Lis H. Trends in Biochemical Sciences, 1987, 12: 488.
[49] Sharon N, Lis H. Science, 1972, 177: 949.
[50] Brownlee M, Cerami A. Science, 1979, 206: 1190.
[51] Wu Q, Wang L, Yu H, Wang J, Chen Z. Chemical Reviews, 2011, 111: 7855.
[52] Jeong S Y, Kimn S W, Eenink M J, Feijen J. Journal of Controlled Release, 1984, 1: 57.
[53] Kim S W, Paii C M, Kimiko M, Seminoff L A, Holmberg D L, Gleeson J M, Wilson D E, Mack E J. Journal of Controlled Release, 1990, 11: 193.
[54] Makino K, Mack E J, Okano T, Kim S W. Journal of Controlled Release, 1990, 12: 235.
[55] Kim J J, Park K. Pharmaceutical Research, 2001, 18: 794.
[56] Liu F, Song S C, Mix D, Baudy M, Kim S W. Bioconjugate Chemistry, 1997, 8: 664.
[57] Nakamae K, Miyata T, Jikihara A, Hoffman A S. Journal of Biomaterials Science, Polymer Edition, 1995, 6: 79.
[58] Lee S J, Park K. Journal of Molecular Recognition, 1996, 9: 549.
[59] Obaidat A A, Park K. Pharmaceutical Research, 1996, 13: 989.
[60] Obaidat A A, Park K. Biomaterials, 1997, 18: 801.
[61] Miyata T, Jikihara A, Nakamae K, Hoffman A S. Macromolecular Chemistry and Physics, 1996, 197: 1135.
[62] Taylor M, Tanna S, Taylor P, Adams G. Journal of Drug Targeting, 1995, 3: 209.
[63] Taylor M J, Tanna S, Sahota T. Journal of Pharmaceutical Sciences, 2010, 99: 4215.
[64] Zhang R, Tang M, Bowyer A, Eisenthal R, Hubble J. Reactive and Functional Polymers, 2006, 66: 757.
[65] Che A F, Liu Z M, Huang X J, Wang Z G, Xu Z K. Biomacromolecules, 2008, 9: 3397.
[66] Yin R, Tong Z, Yang D, Nie J. International Journal of Biological Macromolecules, 2011, 49: 1137.
[67] You L C, Lu F Z, Li Z C, Zhang W, Li F M. Macromolecules, 2003, 36: 1.
[68] Karathanasis E, Bhavane R, Annapragada A V. International Journal of Nanomedicine, 2007, 2: 501.
[69] Yin R, Han J, Zhang J, Nie J. Colloids and Surfaces B: Biointerfaces, 2010, 76: 483.
[70] Wu S, Huang X, Du X. Angewandte Chemie, 2013, 125: 5690.
[71] Lorang J P, Edwards J O. The Journal of Organic Chemistry, 1959, 24: 769.
[72] Angyal S, Greeves D, Pickles V. Carbohydrate Research, 1974, 35: 165.
[73] 徐丹(Xu D), 褚良银(Chu L Y). 化工进展(Chemical Industry and Engineering Progress), 2006, 25: 1045.
[74] Kataoka K, Miyazaki H, Bunya M, Okano T, Sakurai Y. Journal of the American Chemical Society, 1998, 120: 12694.
[75] Kataoka K, Miyazaki H, Okano T, Sakurai Y. Macromolecules, 1994, 27: 1061.
[76] Langer R S, Anderson D G, Gu Z, Aimetti A A. 2013, WO 2013123491-A1.
[77] Ma R, Shi L. Polymer Chemistry, 2014, 5: 1503.
[78] Roy D, Cambre J N, Sumerlin B S. Progress in Polymer Science, 2010, 35: 278.
[79] Tanaka T, Fillmore D, Sun S T, Nishio I, Swislow G, Shah A. Physical Review Letters, 1980, 45: 1636.
[80] Wu W, Zhou S. Macromolecular Bioscience, 2013, 13: 1464.
[81] Zhang Y, Guan Y, Zhou S. Biomacromolecules, 2006, 7: 3196.
[82] Zhang S B, Chu L Y, Xu D, Zhang J, Ju X J, Xie R. Polymers for Advanced Technologies, 2008, 19: 937.
[83] Hoare T, Pelton R. Macromolecules, 2007, 40: 670.
[84] Hoare T, Pelton R. Biomacromolecules, 2008, 9: 733.
[85] Matsumoto A, Ikeda S, Harada A, Kataoka K. Biomacromolecules, 2003, 4: 1410.
[86] Matsumoto A, Yoshida R, Kataoka K. Biomacromolecules, 2004, 5: 1038.
[87] Matsumoto A, Yamamoto K, Yoshida R, Kataoka K, Aoyagi T, Miyahara Y. Chem. Commun., 2010, 46: 2203.
[88] Lapeyre V, Ancla C, Catargi B, Ravaine V. Journal of Colloid and Interface Science, 2008, 327: 316.
[89] Wu W, Mitra N, Yan E C, Zhou S. ACS Nano, 2010, 4: 4831.
[90] Matsumoto A, Ishii T, Nishida J, Matsumoto H, Kataoka K, Miyahara Y. Angewandte Chemie, 2012, 124: 2166.
[91] Wang B, Ma R, Liu G, Li Y, Liu X, An Y, Shi L. Langmuir, 2009, 25: 12522.
[92] Yao Y, Zhao L, Yang J, Yang J. Biomacromolecules, 2012, 13: 1837.
[93] Cambre J N, Roy D, Gondi S R, Sumerlin B S. Polymer Preprints, 2008, 49: 426.
[94] De P, Gondi S R, Roy D, Sumerlin B S. Macromolecules, 2009, 42: 5614.
[95] Qin Y, Cheng G, Sundararaman A, Jäkle F. Journal of the American Chemical Society, 2002, 124: 12672.
[96] Qin Y, Sukul V, Pagakos D, Cui C, Jäkle F. Macromolecules, 2005, 38: 8987.
[97] Roy D, Cambre J N, Sumerlin B S. Chemical Communications, 2009, 2106.
[98] Kim H, Kang Y J, Kang S, Kim K T. Journal of the American Chemical Society, 2012, 134: 4030.
[99] Shiino D, Murata Y, Kataoka K, Koyama Y, Yokoyama M, Okano T, Sakurai Y. Biomaterials, 1994, 15: 121.
[100] Shiino D, Murata Y, Kubo A, Kim Y J, Kataoka K, Koyama Y, Kikuchi A, Yokoyama M, Sakurai Y, Okano T. Journal of Controlled Release, 1995, 37: 269.
[101] Zhao Y, Trewyn B G, Slowing I I, Lin V S Y. Journal of the American Chemical Society, 2009, 131: 8398.
[102] Guo Q, Wu Z, Zhang X, Sun L, Li C. Soft Matter, 2014, 10: 911.
[103] Ma R, Yang H, Li Z, Liu G, Sun X, Liu X, An Y, Shi L. Biomacromolecules, 2012, 13: 3409.
[104] Ding Z, Guan Y, Zhang Y, Zhu X. Soft Matter, 2009, 5: 2302.
[105] De Geest B G, Jonas A M, Demeester J, de Smedt S C. Langmuir, 2006, 22: 5070.
[106] Wang Y, Zhang X, Han Y, Cheng C, Li C. Carbohydrate Polymers, 2012, 89: 124.
[107] Cheng C, Zhang X, Wang Y, Sun L, Li C. New Journal of Chemistry, 2012, 36: 1413.
[108] Cheng C, Zhang X, Xiang J, Wang Y, Zheng C, Lu Z, Li C. Soft Matter, 2012, 8: 765.
[109] Wu Z, Zhang S, Zhang X, Shu S, Chu T, Yu D. Journal of Pharmaceutical Sciences, 2011, 100: 2278.
[110] Yang H, Sun X, Liu G, Ma R, Li Z, An Y, Shi L. Soft Matter, 2013, 9: 8589.
[111] De Geest B G, Sanders N N, Sukhorukov G B, Demeester J, de Smedt S C. Chemical Society reviews, 2007, 36: 636.
[112] Hoeg-Jensen T, Havelund S, Nielsen P K, Markussen J. Journal of the American Chemical Society, 2005, 127: 6158.
[113] Hoeg-Jensen T, Ridderberg S, Havelund S, Schäffer L, Balschmidt P, Jonassen I, Vedsø P, Olesen P H, Markussen J. Journal of Peptide Science, 2005, 11: 339.
[114] Chapman T M, Noble S, Goa K L. Drugs, 2002, 62: 1945.
[115] Havelund S, Plum A, Ribel U, Jonassen I, Vølund A, Markussen J, Kurtzhals P. Pharmaceutical Research, 2004, 21: 1498.
[116] Di J, Price J, Gu X, Jiang X, Jing Y, Gu Z. Advanced Healthcare Materials, 2014, 3: 811.
[117] 陈孟婕(Chen M J), 姚晋荣(Yao J R), 邵正中(Shao Z Z), 陈新(Chen X). 化学进展(Progress in Chemistry), 2011, 23: 202.
[118] 陈梦君(Chen M J), 杨万泰(Yang W T), 尹梅贞(Yin M Z). 化学进展(Progress in Chemistry), 2012, 24: 2403.

[1] Yi Han, Haiqing Dong, Sheng Li, Weida Li, Yongyong Li. Islet Encapsulation and Its Application in Islet Transplantation [J]. Progress in Chemistry, 2018, 30(11): 1660-1668.
[2] Zhou Jun, Bai Zhaoshuai, Xu Huibi, Huang Kaixun*. Selenoproteins and Diabetes——Dual Effect of Selenium [J]. Progress in Chemistry, 2013, 25(04): 488-494.
[3] Yang Xiaogai Wang Qin Liu Jingcheng Wang Kui. Mechanisms Underlying Diversified Biological Effects of Vanadium Compounds [J]. Progress in Chemistry, 2009, 21(05): 890-895.
[4] Wei Dan Ding Wenjun Zhou Ju Peng Duan Li Ming. Research Progress in Anti-Diabetic Effects of Vanadium Compounds [J]. Progress in Chemistry, 2009, 21(05): 896-902.
[5] Yang Xiaogai,Yang Xiaoda,Wang Kui*. Biological Effects of Vanadium and Its Potential for Pharmaceutical Applications-The Chemical Issues in the Studies on Metal Drugs [J]. Progress in Chemistry, 2002, 14(04): 279-.