中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (1): 59-69 DOI: 10.7536/PC140933 Previous Articles   Next Articles

• Review •

Synthesis, Structure and Properties of Chiral Polyimides

Kang Chuanqing, Yan Jijun, Gao Lianxun*   

  1. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21274142) and the National Basic Research Program of China (973 Program) (No. 2014CB643603).

PDF ( 1105 ) Cited
Export

EndNote

Ris

BibTeX

As an important research field of chiral polymers, chiral polyimides have attracted much attention from polymer community for their potential applications in molecular recognition, enantioselective separation, and asymmetric catalysis. This paper reviews the advance on chiral polyimides in past 20 years. Optically active polyimides are divided into three types according to the position and type of the chiral groups, which are the chirality on side chain, the central chirality on main chain, and the axial chirality on main chain. Each type of chiral polyimides is summarized in details with representative structure, synthesis, properties, the formation of secondary structure, and applications related to the chiro-optical activity of the polymers. Chiral polyimides prepared by post-derivation on the side chains of the achiral backbones supplied chiral alignment surfaces to induce the alignment of liquid crystals in forms with enantiomeric excess or with specific directions. Chiral polyimides with chiral groups in main chains are prepared from chiral dianhydrides or chiral diamines that are usually derived from amino acids, trans-1,2-cyclohexanediamine, spirocyclic compounds, and binaphthyl derivatives. Studies have shown that both central chiral monomers and axial chiral monomers induced the formation of secondary structure by the chiral polyimides. Optical rotation and circular dichroism (CD) are still the few tools for the investigations to the chiral secondary structure of chiral polyimides. At the end of the review, we present the challenges and the future directions of the developments on chiral polyimides. Despite quick developments in recent years, preparations, structures, and applications of chiral polyimides, as well as scrutiny on the chiral secondary structure with rationale models and methodologies, are worthy of paying much attention.

Contents
1 Introduction
2 Polyimides with chiral groups in side chains
3 Polyimides with central chirality in main chain
3.1 Chiral polyimides from amino acids
3.2 Chiral polyimides from trans-1, 2-cyclohexanediamine
3.3 Chiral polyimides from chiral dianhydride
4 Polyimides with axial chirality in main chain
4.1 Chiral polyimides from binaphthyl compounds
4.2 Chiral polyimides from spirobifluorene
5 Conclusion and outlook

CLC Number: 

[1] Ho R M, Chiang Y W, Lin S C, Chen C K. Prog. Polym. Sci., 2011, 36: 376.
[2] Itsuno S. Prog. Polym. Sci., 2005, 30: 540.
[3] Li M M, Qing G Y, Zhang M X, Sun T L. Sci. China Chem., 2014, 57: 540.
[4] Itsuno S, Parvez M M, Haraguchi N. Polym. Chem., 2011, 2: 1942.
[5] Iwasaki T., Nishide H. Curr. Org. Chem., 2005, 9: 1665.
[6] Nakano T. J. Chromatography A, 2001, 906: 205.
[7] Ding M X. Prog. Polym. Sci., 2007, 32: 623.
[8] Liaw D J, Wang K L, Huang Y C, Lee, K R, Lai J Y, Ha C S. Prog. Polym. Sci., 2012, 37: 907.
[9] Mallakpour S, Zadehnazari A. Express Polym. Lett., 2011, 5: 142.
[10] Shiromo K, Sahade D A, Oda T, Nihira T, Takanishi Y, Ishikawa K, Takezoe H. Angew. Chem. Int. Ed., 2005, 44: 1948.
[11] Choi S W, Takanishi Y, Ishikawa K, Takezoe H. Appl. Phys. Lett., 2007, 90: 033115.
[12] Sukchol K, Thongyai S, Praserthdam P. J. Appl. Polym. Sci., 2011, 120: 3265.
[13] Zahmatkesh S, Vakili M R. J. Amino Acids, 2010, 910906.
[14] Liu R, Sanda F, Masuda T. Macromol. Chem. Phys., 2009, 210: 331.
[15] Liu R, Sanda F, Masuda T. Macromolecules, 2008, 41: 5089.
[16] Mallakpour S, Dinari M. Polymer, 2013, 54: 2907.
[17] Mallakpour S, Khani M. Polym. Bull., 2013, 70: 2125.
[18] Mallakpour S, Zarei M. High Perform. Polym., 2013, 25: 918.
[19] Mallakpour S, Dinari M. Polym. Bull., 2013, 70: 1049.
[20] Mallakpour S, Moslemi S. Synth. React. Inorg. Metal-Org. Nano-Metal Chem., 2014, 44: 185.
[21] Mallakpour S, Khani M. Polym. Bull., 2013, 70: 2125.
[22] Mallakpour S, Banihassan K. Des. Monomers Polym., 2012, 15: 417.
[23] Mallakpour S, Kolahdoozan M. J. Appl. Polym. Sci., 2007, 104: 1248.
[24] Hajipour A R, Zahmatkesh S, Ruoho A E. Polym. Adv. Technol., 2008, 19: 1710.
[25] Hajipour A R, Zahmatkesh S, Ruoho A E. e-Polymers, 2008, 050.
[26] Hajipour A R, Habibi S, Ruoho A E. Chin. J. Polym. Sci., 2010, 28: 713.
[27] Faghihi K, Hajibeygi M. Chin. J. Polym. Sci., 2010, 28: 517.
[28] Faghihi K, Hajibeygi M, Shabanian M. Macromol. Res., 2009, 17: 739.
[29] Faghihi K, Moghanian H. Polym. Bull., 2010, 65: 319.
[30] Isfahai H N, Faghihi K, Hajibeygi M, Bokaei M. Polym. Bull., 2010, 64: 633.
[31] Tagle L H, Terraza C A, Villagra H, Tundidor-Camba A. Polym. Bull., 2011, 67: 1799.
[32] Zahmatkesh S, Alborzi A R, Sadeghi J, Zare K. Chin. Chem. Lett., 2011, 22: 607.
[33] Alborzi A R, Zahmatkesh S, Zare K, Sadeghi J. Amino Acids, 2011, 41: 485.
[34] Alborzi A R, Zahmatkesh S, Yazdanpanah A. Polym. Bull., 2013, 70: 3359.
[35] Seçkin T, Köytepe S, Yi D?it M, Cetinkaya E. Des. Monomers Polym., 2004, 7: 377.
[36] Dautel O J, Wantz G, Flot D, Lere-Porte J P, Moreau J J E, Parneix J P, Serein-Spirau F. J. Mater. Chem., 2005, 15: 4446.
[37] Kudo K, Nonokawa D, Li J, Shiraishi S. J. Polym. Sci. Polym. Chem., 2002, 40: 4038.
[38] Li J, Shiraishi S, Kudo K. Bull. Chem. Soc. Japan., 2001, 74: 1767.
[39] Kudo K, Li J, Nonokawa D, Yoshizawa T, Kishida Y, Takayama T, Shiraishi S. J. Photophys. Sci. Technol., 2002, 15: 215.
[40] Shockravi A, Javadi A, Abouzari-Lotf E. RSC Adv., 2013, 3: 6717.
[41] Mi Q D, Gao L X, Ding M X. Macromolcules, 1996, 29: 5758.
[42] Mi Q D, Gao L X, Li L M, Ma Y, Zhang X, Ding M X. J. Polym. Sci. Polym. Chem., 1997, 35: 3287.
[43] Song N H, Gao L X, Ding M X. J. Polym. Sci. Polym. Chem., 1999, 37: 3147.
[44] Song N H, Qi W, Qiu X P, Gao L X, Ding M X. J. Polym. Sci. Polym. Chem., 2004, 42: 4318.
[45] Song N H, Gao L X, Qiu X P, Qi W, Ding M X. Macromol. Chem. Phys., 2000, 201: 1148.
[46] Mi Q D, Ma Y, Gao L X, Ding M X. J. Polym. Sci. Polym. Chem., 1999, 37: 4536.
[47] Ritter N, Senkovska I, Kaskel S, Weber J. Macromol. Rapid Commun., 2011, 32: 438.
[48] Wu Z L, Han B C, Zhang C H, Zhu D Y, Gao L X, Ding M X, Yang Z H. Polymer, 2012, 53: 5706.

[1] Tong Wang, Wenjiao Zhao, Liangchun Li, Renlin Zheng, Dequn Sun. Synthesis of Dehydroamino Acids and Their Applications in the Drug Research and Development [J]. Progress in Chemistry, 2020, 32(1): 55-71.
[2] Wang Zhipeng, Tian Changlin, Zheng Jishen. The Structural Designs and Property Analysis of Polyamide Based Structures as Peptide Secondary Structure Mimics [J]. Progress in Chemistry, 2016, 28(9): 1328-1340.
[3] Gong Dejun, Gao Guanbin, Zhang Mingxi, Sun Taolei. Chiral Gold Nanoclusters: Synthesis, Properties and Applications [J]. Progress in Chemistry, 2016, 28(2/3): 296-307.
[4] Zhang Chunqiu, Luo Quan, Liu Junqiu, Shen Jiacong. New Strategies for Protein Functionalization: Inserting Unnatural Amino Acids into Proteins [J]. Progress in Chemistry, 2012, 24(04): 577-588.
[5] Hu Suqin, Zhang Xiaodong, Xu Min, Sun Li. Application of Ionic Liquids in Biomass Utilization [J]. Progress in Chemistry, 2011, 23(4): 731-738.
[6] . Interactions between Carbon Nanotubes and Biomolecules [J]. Progress in Chemistry, 2010, 22(09): 1767-1775.
[7] Geng Jie Yu Haijia Zhang Haiyuan Xu Haixia Qu Xiaogang. Interactions of Rare Earth-Amino Acid Complexes with Nucleic Acids [J]. Progress in Chemistry, 2009, 21(05): 866-872.
[8] Tian Shanxi. Hydrogen Bonding Effects on Conformational Stabilities and Dissociative Photoionization Dynamics of Amino Acids [J]. Progress in Chemistry, 2009, 21(04): 600-605.
[9] Zhang Wenhu1,Cai Yan1,Liu Xiang1**,Fang Yun1,Xu Jianhe2. Asymmetric Reduction of Aromatic Ketones [J]. Progress in Chemistry, 2007, 19(10): 1537-1553.
[10] Gao Qiang 1,2,Xu Yao1**,Wu Dong1,Sun Yuhan1 . Adsorption of Amino Acids on the Surface of Solid Materials [J]. Progress in Chemistry, 2007, 19(06): 1016-1025.
[11] Qishu Qu1,Xiaoqing Tang1,Xiaoya Hu1**,Shouchun Li2 . Applications of Pre-Column Derivatization for Amino Acids Analysis [J]. Progress in Chemistry, 2006, 18(06): 789-793.
[12] Liqin Jiang,Ligong Chen*. New Development of Coupling Reagents for Hindered Peptide [J]. Progress in Chemistry, 2006, 18(0203): 262-269.
[13] Zhang Chun,Zheng yansong**,Mei Fuming,Li Guangxing. Recognition of Bioactive Molecules by Calixarenes [J]. Progress in Chemistry, 2004, 16(06): 934-.
[14] Guo Tianying**,Zhang Liying,Hao Guangjie,Song Moudao,Zhang Banghua. Molecular Imprinting Polymers for Chiral Separation of Amino Acid Derivatives [J]. Progress in Chemistry, 2004, 16(04): 638-.
[15] Lu Yan**,Xu Quanqing,li Xiangrong. The Study of Heat Capacity for the Systems of Amino Acids and Proteins [J]. Progress in Chemistry, 2004, 16(03): 365-.