中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (2/3): 297-309 DOI: 10.7536/PC140932 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Nb-Based Oxides as Anode Materials for Lithium Ion Batteries

Lou Shuaifeng1, Cheng Xinqun1, Ma Yulin1, Du Chunyu1, Gao Yunzhi1, Yin Geping*1,2   

  1. 1. Institute of Advanced Power Sources, School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, China;
    2. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51472065).

PDF ( 2753 ) Cited
Export

EndNote

Ris

BibTeX

Li4Ti5O12 as anode materials for lithium ion batteries has been widely studied because of its excellent rate performance and cycle performance, but the low specific capacity (175 mAh/g) limits its application in the future. Compared with Li4Ti5O12, niobium based oxides have similar lithium ion insertion/extraction potential and higher specific capacity. In addition,they also have good rate performance and promising to be new anode materials with high power performance, that have got increasing researchers' attention in recent years. In this paper,the crystal structure, electrochemical performance and lithium ion insertion/extraction mechanism of various niobium based oxides materials (Nb2O5, TiNb2O7, LiNb3O8, etc.) are reviewed. The effects on lithium ion transfer and storage performance originate from component, particle morphology and preparation technology are discussed. Meanwhile, the influencing mechanism is also summarized. In addition, the generality in electrochemical lithium insertion and extraction behavior of niobium based oxides materials, the differences and similarities compared with Li4Ti5O12 are summarized the tendency and prospect of them as anode materials for high power lithium ion batteries in the end are also discussed.

Contents
1 Introduction
2 Research status of Nb-based oxides anode materials for lithium ion battery
2.1 Niobium oxides
2.2 Titanium niobium oxides
2.3 Lithium niobium oxides
2.4 Potassium niobium oxides
2.5 Vanadium niobium oxides
2.6 Other niobium based oxides
3 Understand of intercalation and deintercalation of lithium ion for niobium based oxide
4 Summary

CLC Number: 

[1] Tarascon J M, Armand M. Nature, 2001, 414: 359.
[2] Li H, Wang Z, Chen L, Huang X. Adv. Mater., 2009, 21: 4593.
[3] Lu X, Zhao L, He X, Xiao R, Gu L, Hu Y S, Li H, Wang Z, Duan X,Chen L. Adv. Mater., 2012, 24: 3233.
[4] Fang W, Cheng X, Zuo P, Ma Y, Yin G. Electrochim. Acta, 2013, 93: 173.
[5] Wang Y Q, Gu L, Guo Y G, Li H, He X Q, Tsukimoto S, Ikuhara Y, Wan L J. J. Am. Chem. Soc., 2012, 134: 7874.
[6] Fang W, Zuo P, Ma Y, Cheng X, Liao L, Yin G. Electrochim. Acta, 2013, 94: 294.
[7] Han J T, Huang Y H, Goodenough J B. Chem. Mater., 2011, 23: 2027.
[8] Han J T, Liu D Q, Song S H, Kim Y, Goodenough J B. Chem. Mater., 2009, 21: 4753.
[9] Han J T, Goodenough J B. Chem. Mater., 2011, 23: 3404.
[10] Goodenough J B, Kim Y. J. Power Sources, 2011, 196: 6688.
[11] Goodenough J B. Acc. Chem. Res., 2012, 46: 1053.
[12] Li Y, Sun C, Goodenough J B. Chem. Mater., 2011, 23: 2292.
[13] Goodenough J B, Han J T. US 8647773. 2014.
[14] Tang K, Mu X, van Aken P A, Yu Y, Maier J. Adv. Energy Mater., 2013, 3: 49.
[15] Lu X, Jian Z, Fang Z, Gu L, Hu Y S, Chen W, Wang Z, Chen L. Energy Environ. Sci., 2011, 4: 2638.
[16] Pralong V, Reddy M A, Caignaert V, Malo S, Lebedev O, Varadaraju U, Raveau B. Chem. Mater., 2011, 23: 1915.
[17] Jian Z, Lu X, Fang Z, Hu Y S, Zhou J, Chen W, Chen L. Electrochem. Commun., 2011, 13: 1127.
[18] Sasidharan M, Gunawardhana N, Yoshio M, Nakashima K. Mater. Res. Bull., 2012, 47: 2161.
[19] Wu X, Miao J, Han W, Hu Y S, Chen D, Lee J S, Kim J, Chen L. Electrochem. Commun., 2012, 25: 39.
[20] Saritha D, Varadaraju U. Mater. Res. Bull., 2013, 48: 2702.
[21] Goodenough J B, Kim Y. Chem. Mater., 2009, 22: 587.
[22] Yan C, Xue D. Adv. Mater., 2008, 20: 1055.
[23] Cui H, Dwight K, Soled S, Wold A. J. Solid State Chem., 1995, 115: 187.
[24] Furukawa S, Ohno Y, Shishido T, Teramura K, Tanaka T. ACS Catal., 2011, 1: 1150.
[25] Kavan L, Kalbac M, Zukalová M, Exnar I, Lorenzen V, Nesper R, Graetzel M. Chem. Mater., 2004, 16: 477.
[26] Viet A L, Reddy M, Jose R, Chowdari B, Ramakrishna S. J. Phys. Chem. C, 2009, 114: 664.
[27] Gatehouse B, Wadsley A. Acta Crystallogr., 1964, 17: 1545.
[28] Kumagai N, Koishikawa Y, Komaba S, Koshiba N. J. Electrochem. Soc., 1999, 146: 3203.
[29] Kumagai N, Tanno K, Nakajima T, Watanabe N. Electrochim. Acta, 1983, 28: 17.
[30] Kodama R, Terada Y, Nakai I, Komaba S, Kumagai N. J. Electrochem. Soc., 2006, 153: A583.
[31] Tamura S, Kato K,Goto M. Z. Anorg. Allg. Chem., 1974, 410: 313.
[32] Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J. Nature, 2000, 407: 496.
[33] Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. Nat. Nanotech., 2007, 3: 31.
[34] Wei M, Wei K, Ichihara M, Zhou H. Electrochem. Commun., 2008, 10: 980.
[35] Luo H, Wei M, Wei K. Mater. Chem. Phys., 2010, 120: 6.
[36] Kim J W, Augustyn V, Dunn B. Adv. Energy Mater., 2012, 2: 141.
[37] Augustyn V, Come J, Lowe M A, Kim J W, Taberna P L, Tolbert S H, Abruña H D, Simon P, Dunn B. Nat. Mater., 2013, 12: 518.
[38] Wang X, Li G, Chen Z, Augustyn V, Ma X, Wang G, Dunn B, Lu Y. Adv. Energy Mater., 2011, 1: 1089.
[39] Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y. Nano Lett., 2010, 10: 4750.
[40] Zhu N, Liu W, Xue M, Xie Z, Zhao D, Zhang M, Chen J, Cao T. Electrochim. Acta, 2010, 55: 5813.
[41] Fan Q, Whittingham M S. Electrochem. Solid-State Lett., 2007, 10: A48.
[42] Le Viet A, Reddy M, Jose R, Chowdari B, Ramakrishna S. Electrochim. Acta, 2011, 56: 1518.
[43] Wen H, Liu Z, Wang J, Yang Q, Li Y, Yu J. Appl. Surf. Sci., 2011, 257: 10084.
[44] Park G, Gunawardhana N, Lee C, Lee S M, Lee Y S, Yoshio M. J. Power Sources, 2013, 236: 145.
[45] Kumagai N, Ishiyama I, Tanno K. J. Power Sources, 1987, 20: 193.
[46] Li B, Han C, He Y B, Yang C, Du H, Yang Q H, Kang F. Energy Environ. Sci., 2012, 5: 9595.
[47] Zhang X F, Wang K X, Wei X, Chen J S. Chem. Mater., 2011, 23: 5290.
[48] Hao Y J, Lai Q Y, Lu J Z, Ji X Y. Ionics, 2007, 13: 369.
[49] Zhang B, Du H, Li B, Kang F. Electrochem. Solid-State Lett., 2010, 13: A36.
[50] Cai R, Jiang S, Yu X, Zhao B, Wang H, Shao Z. J. Mater. Chem., 2012, 22: 8013.
[51] Thackeray M, De Kock A, Rossouw M, Liles D, Bittihn R, Hoge D. J. Electrochem. Soc., 1992, 139: 363.
[52] Schoonman J, Tuller H, Kelder E. J. Power Sources, 1999, 81: 44.
[53] Islam M S, Driscoll D J, Fisher C A, Slater P R. Chem. Mater., 2005, 17: 5085.
[54] Li G, Wang X, Ma X. J. Energy Chem., 2013, 22: 357.
[55] Van der Ven A, Bhattacharya J, Belak A A. Acc. Chem. Res., 2012, 46: 1216.
[56] Yoo J E, Park J, Cha G, Choi J. Thin Solid Films, 2013, 531: 583.
[57] Shen Y, Xiong T, Shang J, Yang K. Res. Chem. Intermediat, 2008, 34: 353.
[58] Gasperin M. J. Solid State Chem., 1984, 53: 144.
[59] Cava R, Murphy D, Zahurak S. J. Electrochem. Soc., 1983, 130: 2345.
[60] Cava R, Santoro A, Murphy D, Zahurak S, Roth R. J. Solid State Chem., 1982, 42: 251.
[61] Inoue K, Suzuki S, Nagai M. J. Electroceram., 2010, 24: 110.
[62] Gopaiakrishnan R, Viswanathan B, Ramakrishnan V, Kuriacose J. Mater. Chem. Phys., 1987, 18: 171.
[63] Jayaraman S, Aravindan V, Kumar P S, Wong C L, Ramakrishna S, Madhavi S. ACS Appl. Mater. Interfaces, 2014, 6: 8660.
[64] Aravindan V, Sundaramurthy J, Jain A, Kumar P S, Ling W C, Ramakrishna S, Srinivasan M P, Madhavi S. ChemSusChem, 2014, 7: 1858.
[65] Fei L, Xu Y, Wu X, Li Y, Xie P, Deng S, Smirnov S, Luo H. Nanoscale, 2013, 5: 11102.
[66] Guo B, Yu X, Sun X G, Chi M, Qiao Z A, Liu J, Hu Y S, Yang X Q, Goodenough J B, Dai S. Energy Environ. Sci., 2014, 7: 2220.
[67] Jo C, Kim Y, Hwang J, Shim J, Chun J, Lee J. Chem. Mater., 2014, 26: 3508.
[68] Dominko R, Baudrin E, Umek P, Ar D? on D, Gaberš D? ek M, Jamnik J. Electrochem. Commun., 2006, 8: 673.
[69] Dominko R, Dupont L, Gaberš D? ek M, Jamnik J, Baudrin E. J. Power Sources, 2007, 174: 1172.
[70] Colin J F, Pralong V, Hervieu M, Caignaert V, Raveau B. Chem. Mater., 2008, 20: 1534.
[71] Colin J F, Pralong V, Caignaert V, Hervieu M, Raveau B. Inorg. Chem., 2006, 45: 7217.
[72] Colin J F, Pralong V, Hervieu M, Caignaert V, Raveau B. J. Mater. Chem., 2008, 18: 3121.
[73] Cheng Q, Liang J, Zhu Y, Si L, Guo C, Qian Y. J. Mater. Chem. A, 2014, 2: 17258.
[74] Son J. Electrochem. Commun., 2004, 6: 990.
[75] Li H, Zhou H. Chem. Commun., 2012, 48: 1201.
[76] Kim C, Norberg N S, Alexander C T, Kostecki R, Cabana J. Adv. Funct. Mater., 2013, 23: 1214.
[77] Fan Q, Lei L, Sun Y. Nanoscale, 2014, 6: 7188.
[78] Fan Q, Lei L, Yin G, Sun Y. Chem. Commun., 2014, 50: 2370.
[79] Xu H, Shu J, Hu X, Sun Y, Luo W, Huang Y. J. Mate. Chem. A, 2013, 1: 15053.
[80] Kwak J E, Yun H, Chae H. Acta Crystallogr. Sect. E: Struct. Rep. Online, 2005, 61: i132.
[81] Lu Y, Goodenough J B, Dathar G K P, Henkelman G, Wu J, Stevenson K. Chem. Mater., 2011, 23: 3210.
[82] Cho A, Son J, Aravindan V, Kim H, Kang K, Yoon W, Kim W, Lee Y. J. Mater. Chem., 2012, 22: 6556.
[83] Li H, Liu X, Zhai T, Li D, Zhou H. Adv. Energy Mater., 2013, 3: 428.
[84] Li G, Wang X, Chen Z, Ma X, Lu Y. Electrochim. Acta, 2013, 102: 351.
[85] Li G, Wang X, Ma X. J. Mater. Chem. A, 2013, 1: 12409.
[86] Tabero P. J. Therm. Anal. Calorim., 2007, 88: 269.
[87] Murphy D, Greenblatt M, Cava R, Zahurak S. Solid State Ionics, 1981, 5: 327.
[88] Zachau C B, West K, Jacobsen T, Skaarup S. Solid State Ionics, 1992, 53: 364.
[89] Reddy M A, Varadaraju U. Chem. Mater., 2008, 20: 4557.
[90] Fuentes A F, Garza E B, Martine2-de la Cruz A, Torres-Martínez L M. Solid State Ionics, 1997, 93: 245.
[91] Montemayor S M, Mendez A A, Martínez-de la Cruz A, Fuentes A F,Torres-Martínez L M. J. Mater. Chem., 1998, 8: 2777.
[92] Yamada H, Hibino M, Kudo T. Solid State Ionics, 2001, 140: 249.
[93] Saritha D, Pralong V, Varadaraju U, Raveau B. J. Solid State Chem., 2010, 183: 988.
[94] Permér L, Lundberg M. J. Solid State Chem., 1989, 81: 21.
[95] Permér L, Lundberg M. J. Less Common Metals, 1989, 156: 145.
[96] Bohnke C, Fourquet J, Randrianantoandro N, Brousse T, Crosnier O. J. Solid State Electrochem., 2001, 5: 1.
[97] Reddy M V, Madhavi S, Subba Rao G V, Chowdari B V R. J. Power Sources, 2006, 162: 1312.
[98] Patoux S, Dolle M, Rousse G, Masquelier C. J. Electrochem. Soc., 2002, 149: A391.
[99] Drozhzhin O, Vorotyntsev M, Maduar S, Khasanova N, Abakumov A, Antipov E. Electrochim. Acta, 2013, 89: 262.
[100] Reddy M A, Varadaraju U. J. Phys. Chem. C, 2011, 115: 25121.
[101] Cava R, Santoro A, Murphy D, Zahurak S, Roth R. Solid State Ionics, 1981, 5: 323.

[1] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[2] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[3] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[4] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[5] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.
[6] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[7] Chaojiang Fan, Yinglin Yan, Liping Chen, Shiyu Chen, Jiaming Lin, Rong Yang. Transition-Metal Sulfides Modified Cathode of Li-S Batteries [J]. Progress in Chemistry, 2019, 31(8): 1166-1176.
[8] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.
[9] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[10] Li Jiaoyang, Wang Li, He Xiangming. Phosphorus-Based Composite Anode Materials for Secondary Batteries [J]. Progress in Chemistry, 2016, 28(2/3): 193-203.
[11] Xia Wen, Li Zheng, Xu Yinli, Zhuang Xupin, Jia Shiru, Zhang Jianfei. Bacterial Cellulose Based Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2016, 28(11): 1682-1688.
[12] Chen Jun, Ding Nengwen, Li Zhifeng, Zhang Qian, Zhong Shengwen. Organic Cathode Material for Lithium Ion Battery [J]. Progress in Chemistry, 2015, 27(9): 1291-1301.
[13] Meng Haowen, Ma Daqian, Yu Xiaohui, Yang Hongyan, Sun Yanli, Xu Xinhua. Tin-Metal-Carbon Composite Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2015, 27(8): 1110-1122.
[14] Liu Xin, Zhao Hailei, Xie Jingying, Lv Pengpeng, Wang Ke, Cui Jiajia. SiOx(0<x≤2) Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(4): 336-348.
[15] Li Dan, Liu Yurong, Lin Baoping, Sun Ying, Yang Hong, Zhang Xueqin. Graphene/Metal Oxide Composites as Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2015, 27(4): 404-415.