中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (2/3): 310-320 DOI: 10.7536/PC140827 Previous Articles   

• Review •

The Key Materials and Components for Proton Exchange Membrane Fuel Cell

Wang Cheng*1, Wang Shubo1, Zhang Jianbo2, Li Jianqiu2, Yang Minggao2, Wang Jianlong1   

  1. 1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
    2. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. U1462112),the Program of Internatinal S&T Cooperation (No.2013DFG41460, 2013DFG60080),the State Key Basic Science Research Project of China (No.2012CB215401), and the National High Technology Research and Development Program of China(No.2013AA110202).

PDF ( 2372 ) Cited
Export

EndNote

Ris

BibTeX

Vehicle fuel cells include proton exchange membrane fuel cell (PEMFC), metal/air fuel cell, etc. The PEMFC is the most promising candidate for automobile application. Through over a decade continuous research and development all over the world, the performances of PEMFC, such as energy efficiency, volume and mass power density, low temperature start ability, have attained breakthrough progress. A new round of fuel cell automobile industrialization has been being approached. However, the properties of durability and cost of the PEMFC system have not met the target of industrialization, and the state of art of durability and cost become the obstacles of PEMFC automobiles industrialization. The novel key materials and components used in the PEMFC should be focused on in the future study, and must be further researched and developed for the two obstacles resolution and the PEMFC industrialization promotion. In this paper, based on a large number of current research articles, the progress and achievement of key materials and components for PEMFC, include proton exchange membrane, catalyst layer, gas diffusion layer, bipolar plate, have been detailed analyzed and classified reviewed. The gap between their state of art and the target of industrialization is analyzed and the emphasis development direction in the future is summarized based on the key materials and components.

Contents
1 Introduction
2 Proton exchange membrane
3 Catalyst layer
3.1 Catalysts
3.2 Support materials for catalysts
3.3 Fabrication technology of catalyst layer
4 Gas diffusion layer
5 Bipolar plate
6 Summary and outlook

CLC Number: 

[1] 欧阳明高(Ouyang M G). 内燃机学报( Transactions of CSICE), 2008, 26: 107.
[2] Sung W, Song Y, Yu K, Lim T. SAE Int. J. Engines, 2010, 3(1): 768.
[3] Yokoyama T. California Air Resources Board ZEV Symposium, Sacramento CA, Sep., 2009. 21.
[4] 李建秋(Li J Q), 方川(Fang C), 徐梁飞(Xu L F). 汽车安全与节能学报(Journal of Automotive Safety and Energy), 2014, 5(1): 17.
[5] Jones D J. Global Change, Energy Issues and Regulation Policies. Netherlands: Springer, 2013: 161.
[6] The Fuel Cell Technical Team. Fuel Cell Technical Team Roadmap, Washington: DOE, June 2013.
[7] Matthew M. Polymer Electrolyte Fuel Cell Degradation. Dutch: Elsevier, 2011. 112.
[8] Holmström N, Wiezell K, Lindbergh G. J. Electro. Soc., 2012, 159 (8): F369.
[9] Chen Y, Guo R L, Lee C H, Lee M, James E. McGrath. International Journal of Hydrogen Energy, 2012, 37: 6132.
[10] Wang Z B, Tang H L, Li J R, Jin A P, Wang Z, Zhang H L, Pan M. International Journal of Hydrogen Energy, 2013, 38: 4725.
[11] Jung M S, Kim T H, Yoon Y J, Kang C G, Yu D M, Lee J Y, Kim H J, Hong Y T. Journal of Membrane Science, 2014, 459:72.
[12] Chen S W, Chen K C, Zhang X, Hara R, Endo N, Higa M, Okamoto K, Wang L J. Polymer, 2013, 54: 236.
[13] Feng S G, Shang Y M, Wang Y W, Liu G S, Xie X F, Dong W Q, Xu J M, Mathurb V K. Journal of Membrane Science, 2010, 352: 14.
[14] Feng S G, Shang Y M, Liu G S, Dong W Q, Xie X F, Xu J M, Mathurb V K. Journal of Power Sources, 2010, 195: 6450.
[15] Feng S G, Shang Y M, WangY Z, Xie X F, Mathurb V K, Xu J M. Journal of Power Sources, 2010, 195: 2541.
[16] Feng S G, Shang Y M, Wang S B, Xie X F, WangY Z, Wang Y W, Xu J M. Journal of Membrane Science, 2010, 346: 105.
[17] Mader J A, Benicewicz B C. Fuel Cells, 2011, 11(2): 222.
[18] Qian W, Shang Y M, Fang M, Wang S B, Xie X F, Wang J H, Wang W X, Du J Y, Wang Y W, Mao Z Q. International Journal of Hydrogen Energy, 2012, 37: 12919.
[19] Qian W, Shang Y M, Wang S B, Xie X F, Mao Z Q. International Journal of Hydrogen Energy, 2013, 38: 11053.
[20] Makharia R, Kocha S S, Yu P T, Sweikart M A, Gu W, Wagner F T, Gasteiger H A. ECS Transactions, 2006, 1 (8): 3.
[21] Lee K, Zhang J, Wang H, Wilkinson D P. J. Appl. Electrochem., 2006, 36(5): 507.
[22] Antolini E, Gonzalez E R. Solid State Ionics, 2009, 180(9/10): 746.
[23] Zhang P, Huang S Y, Popov B N. J. Electrochem. Soc., 2010, 157(8): B1163.
[24] Seger B, Kongkanand A, Vinodgopal K, Kamat P V. J. Electroanal. Chem., 2008, 621: 198.
[25] Antolini E, Gonzalez E R. Appl. Catal. B: Environ, 2010, 96: 245.
[26] Debe M K. ECS Trans., 2012, 45 (2): 47.
[27] Antolini E, Perez J. J. Mater. Sci., 2011, 46: 4435.
[28] Ehteshami S M M, Chan S H. Electrochimica Acta, 2013, 93: 334.
[29] Zhou X W, Gan Y L, Du J J, Tian D N, Zhang R H, Yang C Y, Dai Z X. Journal of Power Sources, 2013, 232: 310.
[30] Galeano C, Baldizzone C, Bongard H, Spliethoff B, Weidenthaler C, Meier J C, Mayrhofer K J J, Schüth F. Adv. Funct. Mater., 2014, 24: 220.
[31] Zhang G, Shao Z G, Lu W T, Xie F, Xiao H, Qin X P, Yi B L. Applied Catalysis B: Environmental, 2013, 132/133: 183.
[32] Choi R, Choi S, Choi C H, Nam K M, Woo S I, Park J T, Han S W. Chem. Eur. J., 2013, 19: 8190.
[33] Wang S Y, Jiang S P, Xin W G, Guo J. Electrochimica Acta, 2011, 56: 1563.
[34] Kim J M, Joh H I, Jo S M, Ahn D J, Ha H Y, Hong S A, Kim S K. Electrochimica Acta, 2010, 55: 4827.
[35] Guo S J, Zhang S, Sun X L, Sun S H. J. Am. Chem. Soc., 2011, 133: 15354.
[36] Bi Y P, Lu G X. Electrochemistry Communications, 2009, 11: 45.
[37] Sun S H, Jaouen F, Dodelet J P. Adv. Mater., 2008, 20: 3900.
[38] Shimizu W, Okada K, Fujita Y, Zhao S S, Murakami Y. Journal of Power Sources, 2012, 205: 24.
[39] Zhou X J, Qiao J L, Yang L, Zhang J J. Adv. Energy Mater., 2014, 4(8): 1301523.
[40] He W, Jiang H J, Zhou Y, Yang S D, Xue X Z, Zou Z Q, Zhang X G, Akins D L, Yang H. Carbon, 2012, 50(1): 265.
[41] Liao C S, Liao C T, Tso C Y, Shy H J. Mater. Chem. Phys., 2011, 130(1/2): 270.
[42] Kundu P, Nethravathi C, Deshpande P A, Rajamathi M, Madras G, Ravishankar N. Chem. Mater., 2011, 23(11): 2772.
[43] Paul R R K, Mulchandani A. J. Power Sources, 2013, 223: 23.
[44] Qiu J D, Wang G C, Liang R P, Xia X H, Yu H W. J. Phys.Chem. C, 2011, 115(31): 15639.
[45] Maiyalagan T, Dong X, Chen P, Wang X. J. Mater. Chem., 2012, 22: 5286.
[46] Hu Y, Zhang H, Wu P, Zhang H, Zhou B, Cai C. Phys. Chem.Chem. Phys., 2011, 13: 4083.
[47] Choi S M, Seo M H, Kim H J, Kim W B. Synth. Met., 2011, 161: 2405.
[48] Hung T F, Wang B, Tsai C W, Tu M H, Wang G X, Liu R S, Tsai D P, Lo M Y, Shy D S, Xing X K. Int. J. Hydrogen Energy, 2012, 37(19): 14205.
[49] Li Y J, Li Y J, Zhu E, McLouth T, Chiu C Y, Huang X Q, Huang Y. J. Am. Chem. Soc., 2012, 134(30): 12326.
[50] Guo S J, Sun S H. J. Am. Chem. Soc., 2012, 134(5): 2492.
[51] Rajalakshmi N, Lakshmi N, Dhathathreyan K S. International Journal of Hydrogen Energy, 2008, 33: 7521.
[52] Ioroi T, Akita T, Asahi M, Yamazaki S I, Siroma Z, Fujiwara N, Yasuda K. Journal of Power Sources, 2013, 223: 183.
[53] Kakinuma K, Chino Y J, Senoo Y C, Uchida M, Kamino T, Uchida H, Deki S, Watanabe M. Electrochimica Acta, 2013, 110: 316.
[54] Du C Y, Chen M, Cao X Y, Yin G P, Shi P F. Electrochemistry Communications, 2009, 11: 496.
[55] Suzuki S, Onodera T, Kawaji J, Mizukami T, Morishima M, Yamaga K. Journal of Power Sources, 2013, 223: 79.
[56] Yin S B, Mu S C, Lv H F, Cheng N C, Pan M, Fu Z Y. Applied Catalysis B: Environmental, 2010, 93: 233.
[57] Kimmel Y, Yang L R, Kelly T G, Rykov S A, Chen J G. Journal of Catalysis, 2014, 312: 216.
[58] Ou Y W, Cui X L, Zhang X Y, Jiang Z Y. Journal of Power Sources, 2010, 195: 1365.
[59] Middelman E. Fuel Cells Bulletin, 2002, 2002(11): 9.
[60] Tian Z Q, Lim S H, Poh C K, Tang Z, Xia Z T, Luo Z Q, Shen P K, Chua D, Feng Y P, Shen Z X, Lin J Y. Advanced Energy Materials, 2011, 1(6): 1205.
[61] Debe M K, Hendricks S M, Vernstrom G D, Meyers M, Brostrom M, Stephens M, Chan Q, Willey J, Hamden M, Mittelsteadt C K, Capuano C B, Ayers K E, Anderson E B. Journal of the Electrochemical Society, 2012, 159(6): K165.
[62] Bonnefont A, Ruvinskiy P, Rouhet M, Orfanidi A, Neophytides S, Savinova E. WIREs Energy Environ, 2014, 3: 505.
[63] Pan C F, Wu H, Wang C, Wang B, Zhang L, Cheng Z D, Hu P, Pan W, Zhou Z Y, Yang X, Zhu J. Advanced Martials, 2008, 20(9): 1644.
[64] Dong B, Gwee L, Salas-de la Cruz D, Winey K I, Elabd Y A. Nano Letters, 2010. 10(9): 3785.
[65] Cindrella L, Kannan A M, Lin J F, Saminathan K, Ho Y, Lin C W, Wertz J. J. Power Sources, 2009, 194: 146.
[66] Arvay A, Yli-Rantala E, Liu C H, Peng X H, Koski P, Cindrella L, Kauranen P, Wilde P M, Kannan A M. J. Power Sources, 2012, 213: 317.
[67] Park H. Energy Conversion and Management, 2014, 81: 220.
[68] Cho J, Oh H, Park J, Min K, Lee E, Jyoung J. International Journal of Hydrogen Energy, 2014, 39: 495.
[69] Burheim O S, Su H, Pasupathi S, Pharoah J G, Pollet B G. International Journal of Hydrogen Energy, 2013, 38: 8437.
[70] Seo J H, Baik K D, Kim D K, Kim S, Choi J W, Kim M, Song H H, Kim M S. International Journal of Hydrogen Energy, 2013, 38: 16245.
[71] Middleman E, Kout W, Vogelaar B, Lenssen J, de Waal E. J. Power Sources, 2003, 118: 44.
[72] Cho E A, Jeon U S, Ha H Y, Hong S A, Oh I H. J. Power Sources, 2004, 125: 178.
[73] Kuan H C, Ma C C M, Chen K H, Chen S M. J. Power Sources, 2004, 134: 7.
[74] Heinzel A, Mahlendorf F, Neimzig O, Kreuz C. J. Power Sources, 2004, 131: 35.
[75] Wang H, Turner J A. Fuel Cells, 2010, 10(4): 510.
[76] Hermann A, Chaudhuri T, Spagnol P. Int. J. Hydrogen Energy, 2005, 30: 1297.
[77] Mehta V, Cooper J S. J. Power Sources, 2003, 114: 32.
[78] Brett D J L, Brandon N P. J. Fuel Cell Sci. Technol., 2007, 4: 29.
[79] Pozio A, Silva R F, De Francesco M, Giorgi L. Electrochim. Acta, 2003, 48: 1543.
[80] Wang H, Sweikart M A, Turner J A. J. Power Sources, 2003, 115: 243.
[81] Wang H, Turner J A. J. Power Sources, 2004, 128: 193.
[82] Wang H, Teeter G, Turner J A. J. Electrochem. Soc., 2005, 152: B99.
[83] Wang H, Turner J A. ECS Transactions, 2006, 1: 263.
[84] Brady M P, Weisbrod K, Zawodzinski C, Paulauskas I, Buchanan R A, Walker L R. Electrochem. Solid State Lett., 2002, 5: A24.
[85] Brady M P, Weisbrod K, Paulauskas I, Buchanan R A, More L, Wang H, Wilson M, Garzon F, Alker L R. Scripta Mater., 2004, 50: 1017.
[86] Yang M J, Zhang D M. Energy, 2014, 64: 242.
[87] 刘峰(Liu F), 王诚(Wang C), 张剑波(Zhang J B), 兰爱东(Lan A D), 李建秋(Li J Q), 欧阳明高(Ouyang M G). 化学进展(Progress in Chemistry), 2014, 26(11): 1763.

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[6] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[7] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[8] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[9] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[10] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[11] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[12] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[13] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[14] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[15] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.