中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (1): 38-46 DOI: 10.7536/PC140823 Previous Articles   Next Articles

• Review •

Graphitic Carbon Nitride Compound Photocatalyst

Qi Yuehong, Liu Li*, Liang Yinghua, Hu Jinshan, Cui Wenquan*   

  1. College of Chemical Engineering, Hebei United University, Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, Tangshan 063009, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51172063, 51202056, 51372068), the Hebei Natural Science Funds for Distinguished Young Scholars (No. B2014209304), the Natural Science Foundation of Hebei Province (No. E2012401070) and the Hebei Provincial Foundation for Returned Scholars.

PDF ( 1457 ) Cited
Export

EndNote

Ris

BibTeX

Utilizing photocatalysis technology to convert solar energy into chemical energy or direct degradation and mineralization of organic pollutants is a long-term solution to solve the problem of energy shortage and environmental pollution. Polymer type graphite carbon nitride (g-C3N4) possesses a similar structure with graphene and has been attracted widespread attention as a novel photocatalyst for the light catalytic conversion of solar energy due to its excellent chemical stability and unique electronic band structure. Moreover, the g-C3N4 can be used as a low-cost, stable and metal-free visible-light-driven photocatalyst in the degradation of pollutants, water splitting for hydrogen and oxygen evolution and organic synthesis, as the precursors of g-C3N4 are inexpensive and the synthesis is comparatively simple. Many efforts are still needed to overcome the limitation of fast recombination for pure g-C3N4 in practical application. In this review, recent research progress for g-C3N4 has been reviewed, including metal/non-mental doping, semiconductor coupling, depositing with metals. In addition, the catalytic mechanism for the g-C3N4-based composite is also reviewed.

Contents
1 Introduction
2 g-C3N4-metal composites photocatalyst
3 g-C3N4-oxide composites photocatalyst
4 g-C3N4-sulfide composites photocatalyst
5 g-C3N4-bismuth compounds composites photocatalyst
6 g-C3N4-carbon composites photocatalyst
7 Other g-C3N4 composites photocatalyst
8 Conclusion

CLC Number: 

[1] Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Chem. Rev., 1995, 95: 69.
[2] Fujishima A, Honda K. Nature, 1972, 238: 37.
[3] Carey J H, Lawrence J, Tosine H M. Bull. Environ. Contam. Toxicol., 1976, 16: 697.
[4] Daghrir R, Drogui P, Robert D. Ind. Eng. Chem.Res., 2013, 52: 3581.
[5] Lv J, Kako T, Li Z S, Zou Z G, Ye J H. J. Phys. Chem. C, 2010, 114(13): 6157.
[6] Wang H, Gao J, Guo T, Wang R, Guo L, Liu Y, Li J. Chem. Commun., 2012, 48: 275.
[7] Cui W Q, An W J, Liu L, Hu J S, Liang Y H. Journal of Hazardous Materials, 2014, 280: 417.
[8] Liang Y H, Lin S L, Liu L, Hu J S, Cui W Q. Applied Catalysis B: Environmental, 2015, 164: 192.
[9] Li L, Wang Y F, Hu J S, Cui W Q, Liang Y H. Journal of Molecular Catalysis A: Chemical, 2014, 934: 309.
[10] Liang Y H, Lin S L, Hu J S, Liu L, Mcevoy J G, Cui W Q. Journal of Molecular Catalysis A: Chemical, 2014, 383/384: 231.
[11] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nature Materials, 2009, 8: 76.
[12] Thomas A, Fischer A, Goettmann F, Antonietti M. J. Mater. Chem., 2008, 18: 4893.
[13] Niu C M, Lu Y Z, Lieber C M. Science, 1993, 261: 334.
[14] Guo L P, Chen Y, Wang E Q, Li L, Zhao Z X. Chemical Physics Letters, 1997, 268: 26.
[15] Li C, Yang X G, Yang B J, Yan Y, Qian Y T. Mater. Chem. Phys., 2007, 103: 427.
[16] Montigaud H, Tanguy B, Demazeau G, Birot A M, Dunogues J. Diamond Relat. Mater., 1999, 8: 1707.
[17] Nesting D, Badding J V. Chem. Mater., 1996, 8 (7): 1535.
[18] Alexey A, Minoru A, Dmitri G. Diamond Relat. Mater., 2002, 11(12): 1885.
[19] Bai X J, Zong R L, Li C X, Liu D, Liu Y F, Zhu Y F. Applied Catalysis B: Environmental, 2014, 147: 82.
[20] Ge L, Han C C, Liu J, Li Y F. Applied Catalysis A: General, 2014, 409/410: 215.
[21] Yan S C, Li Z S, Zou Z G. Langmuir, 2009, 25(17): 10397.
[22] Cheng N Y, Tian J Q, Liu Q, Ge C J, Qusti A H, Asiri A M, Al-Youbi A O, Sun X P. ACS Appl.Mater.Interface, 2013, 5: 6815.
[23] Di Y, Wang X C, Thomas A, Antonietti M. ChemCatChem, 2010, 2: 834.
[24] Song X F, Tao H, Chen L X, Sun Y. Materials Letters, 2014, 116: 265.
[25] Groenewolt M, Antonietti M. Advanced Materials, 2005, 17(14): 1789.
[26] Wang X C, Maeda K, Chen X F, Takanabe K, Domen K, Hou Y D, Fu X Z, Antonietti M. Journal of the American Chemical Society, 2009, 131(5): 1680.
[27] Li X H, Wang X C, Antonietti M. Chem. Sci., 2012, 3: 2170.
[28] Chang C, Fu Y, Meng H B, Chun Y, Wan G, Shan G Q, Zhu L Y. Applied Catalysis B: Environmental, 2013, 142/143: 553.
[29] Sridharan K, Jang E Y, Park T J. Applied Catalysis B: Environmental, 2013, 142/143: 718.
[30] Wang X J, Yang W Y, Li F T, Xue Y B, Liu R H, Hao Y J. Ind. Eng. Chem. Res., 2013, 52: 17140.
[31] Yang N, Li G, Wang, W, Yang X, Zhang W F. J. Phys. Chem. Solids, 2011, 72: 1319.
[32] Kumar S, Surendar T, Kumar B, Baruah A, Shanker V. J. Phys. Chem. C, 2013, 117: 26135.
[33] Xi G C, Yue B, Cao J Y, Ye J H. Chemistry-A European Journal, 2011, 17(18): 5145.
[34] Chen J, Shen S H, Guo P H, Wang M, Wu P, Wang X X, Guo L J. Applied Catalysis B: Environmental, 2014, 152/153: 335.
[35] Li X F, Li M, Yang J H, Li X Y, Hu T J, Wang J S, Sui Y R, Wu X T, Kong L G. Journal of Physics and Chemistry of Solids, 2014, 75: 441.
[36] Zhang J S, Grzelczak M, Hou Y D, Maeda K, Domen K, Fu X Z, Antonietti M, Wang X C. Chem. Sci., 2012, 3: 443.
[37] Xu M, Han L, Dong S J. ACS Appl. Mater. Interfaces, 2013, 5: 12533.
[38] Ge L, Zuo F, Liu J K, Ma Q, Wang C, Sun D Z, Bartels L, Feng P Y. J. Phys. Chem. C, 2012, 116: 13708.
[39] Fu J, Chang B B, Tian Y L, Xi F N, Dong X P. J. Mater. Chem. A, 2013, 1: 3083.
[40] Zhang J Y, Wang Y H, Jin J, Zhang J, Lin Z, Huang F, Yu J G. ACS Appl. Mater. Interfaces, 2013, 5: 10317.
[41] Bai X J, Wang L, Zong R L, Zhu Y F. J. Phys. Chem. C, 2013, 117(19): 9952.
[42] Yin L S, Yuan Y P, Cao S W, Zhang Z Y, Xue C. RSC Adv., 2014, 4: 6127.
[43] Cao S W, Yuan Y P, Fang J, Shahjamali M M, Boey F Y C, Barber J, Loo S C C J, Xue C. International Journul of Hydrogen Energy, 2013, 38: 1258.
[44] Zhang W, Wang Y B, Wang Z, Zhong Z Y, Xu R. Chem.Commun., 2010, 46: 7631.
[45] Wang J, Guo P, Guo Q S, Jönsson P G, Zhao Z. CrystEngComm, 2014, 16: 4485.
[46] Wang J J, Guan Z Y, Huang J, Li Q X, Yang J L. J. Mater. Chem. A, 2014, 2: 7960.
[47] Jiang D L, Chen L L, Xie J M, Chen M. Dalton Trans, 2014, 43: 4878.
[48] Ye L Q, Liu J Y, Jiang Z, Peng T Y, Zan L. Applied Catalysis B: Environmental, 2013, 142/143: 1.
[49] Ye L Q, Liu J Y, Gong C Q, Tian L H, Peng T Y, Zan L. ACS Catal., 2012, 2(8): 1677.
[50] Ye L Q, Gong C Q, Liu J Y, Tian L H, Peng T Y, Deng K J, Zan L. 2012, 22: 8354.
[51] Ye L Q, Tian L H, Peng T Y, Zan L. Journal of Materials Chemistry, 2011, 21: 12479.
[52] Fu J, Tian Y L, Chang B B, Xi F N, Dong X P. J. Mater. Chem., 2012, 22: 21159.
[53] Shi S, Gondal M A, Al-Saadi A A, Fajgar R, Kupcik J, Chang X F, Shen K, Xu Q Y, Seddigi Z S. Journal of Colloid and Interface Science, 2014, 416: 212.
[54] Ge L, Han C C, Liu J. Applied Catalysis B: Environmental, 2011, 108/109: 100.
[55] Tian Y L, Chang B B, Lu J L, Fu J, Xi F N, Dong X P. ACS Appl. Mater. Interfaces, 2013, 5: 7079.
[56] Ji Y X, Cao J F, Jiang L Q, Zhang Y H, Yi Z G. Journal of Alloys and Compounds, 2014, 590: 9.
[57] Li Z S, Yang S Y, Zhou J M, Li D H, Zhou X F, Ge C Y, Fang Y P. Chemical Engineering Journal, 2014, 241: 344.
[58] Zhang W D, Sun Y J, Dong F, Zhang W, Duan S, Zhang Q. Dalton Trans, 2014, 43: 12026.
[59] Ge L, Han C C. Applied Catalysis B: Environmental, 2012, 117/118: 268.
[60] Bai X J, Wang L, Wang Y J, Yao W Q, Zhu Y F. Applied Catalysis B: Environmental, 2014, 152/153: 262.
[61] Xiang Q J, Yu J G, Jaroniec M. J. Phys. Chem. C, 2011, 115: 7355.
[62] Ho W K, Yu J C, Lin J, Yu J G, Li P S. Langmuir, 2004, 20: 5865.
[63] Yu J G, Hai Y, Jaroniec M. Journal of Colloid and Interface Science, 2011, 357: 223.
[64] Yu J G, Zhao X J, Zhao Q N.Thin Solid Films. 2000, 379: 7.
[65] Liu G, Niu P, Sun C H, Smith S C, Chen Z G, Lu G Q, Cheng H M. J. Am. Chem. Soc., 2010, 132: 11642.
[66] 张金水(Zhang J S),王博(Wang B),王心晨(Wang X C).化学进展(Progress in Chemistry), 2014, 26: 19.
[67] Wang X C, Blechert S, Antonietti M. ACS Catal., 2012, 2: 1596.
[68] Zhang J S, Zhang M W, Sun R Q, Wang X C. Angew. Chem. Int. Ed., 2012, 51: 10145.
[69] Lin Z Z, Wang X C. Angew. Chem. Int. Ed., 2013, 52: 1735.
[70] Zhang J S, Zhang M W, Yang C, Wang X C. Adv. Mater., 2014, 26: 4121.
[71] Zhang J S, Zhang G G, Chen X F, Lin S, Mohlmann L, Dolega G, Lipner G, Antonietti M, Blechert S, Wang X C. Angew. Chem. Int. Ed., 2012, 51: 3183.
[72] He F, Chen G, Yu Y G, Hao S, Zhou Y S, Zheng Y. ACS Appl. Mater. Interfaces, 2014, 6: 7171.
[73] Li T T, Zhao L H, He Y M, Cai J, Luo M F, Lin J J. Applied Catalysis B: Environmental, 2013, 129: 255.
[74] Katsumata H, Sakai T, Suzuki T, Kaneco S. Ind. Eng. Chem. Res., 2014, 53: 8018.
[75] He Y M, Cai J, Li T T, Wu Y, Yi Y M, Luo M F, Zhao L H. Ind. Eng. Chem. Res., 2012, 51: 14729.

[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[3] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[4] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[5] Yu Lin, Xuecai Tan, Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou. Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence [J]. Progress in Chemistry, 2022, 34(4): 898-908.
[6] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[7] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[8] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[9] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[10] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[11] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[12] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[13] Tianyong Zhang, Wei Wu, Jian Zhu, Bin Li, Shuang Jiang. Stretchable Conductive Polymer Composites Prepared with Nano-Carbon Fillers [J]. Progress in Chemistry, 2021, 33(3): 417-425.
[14] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[15] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.