中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (2/3): 157-167 DOI: 10.7536/PC140821 Previous Articles   Next Articles

• Review •

Photoresponsive Surfaces with Controllable Wettability

Zhan Yuanyuan1, Liu Yuyun1, Lv Jiuan1, Zhao Yong2, Yu Yanlei*1   

  1. 1. State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai 200433, China;
    2. School of Chemistry and Environment, Beihang University, Beijing 100191, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the State Key Program of National Natural Science of China(No. 21134003), the National Natural Science Foundation of China(No. 21273048), and the National Science Foundation for Distinguished Young Scholars of China (No. 51225304).

PDF ( 3439 ) Cited
Export

EndNote

Ris

BibTeX

Surface energy and surface topography are two key factors in the wettability of solid substrates. The surface energy determines the contact angle (CA) of a liquid on a flat substrate and the geometrical factor enhances the wetting property for a hydrophilic surface (or non-wetting for a hydrophobic surface). Applying external stimuli is a valuable approach for rendering the change in surface chemistry and/or topography, and for driving the wettability transition of smart surfaces. This review describes the current state-of-the-art research on the reversibly switchable wettability of surface brought about by external stimuli, including surface conversion between superhydrophobicity and superhydrophilicity prepared from inorganic oxides or/and photoactive organic molecules, movement of liquid droplets driven by molecular machines, and light-driven switching of superhydrophobic adhesion.

Contents
1 Introduction
1.1 Basic theory of surface wettability
1.2 Photoresponsive materials
2 Inorganic-oxide-based photoresponsive surfaces
3 Organic-compound-based photoresponsive surfaces
3.1 Non-azobenzene compound photoresponsive surfaces
3.2 Azobenzene compound photoresponsive surfaces
4 Conclusion

CLC Number: 

[1] Wang S T, Song Y L, Jiang L. J. Photochem. Photobiol. C-Photochem. Rev., 2007, 8: 18.
[2] Feng X J, Jiang L. Adv. Mater., 2006, 18: 3063.
[3] Kumar G, Prabhu K N. Adv. Colloid Interfac., 2007, 133: 61.
[4] Wenzel R N. Ind. Eng. Chem., 1936, 28: 988.
[5] Cassie A B D, Baxter S. Trans. Faraday Soc., 1944, 40: 0546.
[6] Sun T L, Feng L, Gao X F, Jiang L. Accounts. Chem. Res., 2005, 38: 644.
[7] Liu Y, Mu L, Liu B H, Kong J L. Chem.-Eur. J., 2005, 11: 2622.
[8] Shi F, Song Y Y, Niu J, Xia X H, Wang Z Q, Zhang X. Chem. Mater., 2006, 18: 1365.
[9] Feng L, Zhang Y A, Xi J M, Zhu Y, Wang N, Xia F, Jiang L. Langmuir, 2008, 24: 4114.
[10] Wu Z L, Buguin A, Yang H, Taulemesse J M, Le Moigne N, Bergeret A, Wang X G, Keller P. Adv. Funct. Mater., 2013, 23: 3070.
[11] Li C, Zhang Y Y, Ju J, Cheng F T, Liu M J, Jiang L, Yu Y L. Adv. Funct. Mater., 2012, 22: 760.
[12] Jin M H, Feng X J, Feng L, Sun T L, Zhai J, Li T J, Jiang L. Adv. Mater., 2005, 17: 1977.
[13] Myint M T Z, Kumar N S, Hornyak G L, Dutta J. Appl. Surf. Sci., 2013, 264: 344.
[14] Feng X J, Zhai J, Jiang L. Angew. Chem. Int. Edit., 2005, 44: 5115.
[15] Lim H S, Kwak D, Lee D Y, Lee S G, Cho K. J. Am. Chem. Soc., 2007, 129: 4128.
[16] Tadanaga K, Morinaga J, Matsuda A, Minami T. Chem. Mater., 2000, 12: 590.
[17] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Nature, 1997, 388: 431.
[18] Kitagawa D, Nishi H, Kobatake S. Angew. Chem. Int. Edit., 2013, 52: 9320.
[19] Ichimura K, Oh S K, Nakagawa M. Science, 2000, 288: 1624.
[20] Jin M H, Li S S, Wang J, Liao M Y, Zhao Y. Appl. Surf. Sci., 2012, 258: 7552.
[21] Jin M H, Wang J, Hao Y, Liao M Y, Zhao Y. Polym. Chem., 2011, 2: 1658.
[22] Rosario R, Gust D, Garcia A A, Hayes M, Taraci J L, Clement T, Dailey J W, Picraux S T. J. Phys. Chem. B, 2004, 108: 12640.
[23] Zhai L, Berg M C, Cebeci F C, Kim Y, Milwid J M, Rubner M F, Cohen R E. Nano Lett., 2006, 6: 1213.
[24] Furstner R, Barthlott W, Neinhuis C, Walzel P. Langmuir, 2005, 21: 956.
[25] Caputo G, Nobile C, Kipp T, Blasi L, Grillo V, Carlino E, Manna L, Cingolani R, Cozzoli P D, Athanassiou A. J. Phys. Chem. C, 2008, 112: 701.
[26] Antony R P, Mathews T, Dash S, Tyagi A K. J. Phys. Chem. C, 2013, 117: 6851.
[27] Liu Z F, Wang Y, Peng X L, Li Y B, Liu Z C, Liu C C, Ya J, Huang Y Z. Sci. Technol. Adv. Mater., 2012, 13.
[28] Wang D A, Liu Y, Liu X J, Zhou F, Liu W M, Xue Q J. Chem. Commun., 2009, 7018.
[29] Lai Y K, Lin C J, Huang J Y, Zhuang H F, Sun L, Nguyen T. Langmuir, 2008, 24: 3867.
[30] Wang S T, Feng X J, Yao J N, Jiang L. Angew. Chem. Int. Edit., 2006, 45: 1264.
[31] Feng X J, Feng L, Jin M H, Zhai J, Jiang L, Zhu D B. J. Am. Chem. Soc., 2004, 126: 62.
[32] Driscoll P F, Purohit N, Wanichacheva N, Lambert C R, McGimpsey W G. Langmuir, 2007, 23: 13181.
[33] Lim H S, Han J T, Kwak D, Jin M H, Cho K. J. Am. Chem. Soc., 2006, 128: 14458.
[34] Nishikawa N, Uyama A, Kamitanaka T, Mayama H, Kojima Y, Yokojima S, Nakamura S, Tsujii K, Uchida K. Chem.-Asian. J., 2011, 6: 2400.
[35] Chen T, Ferris R, Zhang J M, Ducker R, Zauscher S. Prog. Polym. Sci., 2010, 35: 94.
[36] Orski S V, Fries K H, Sontag S K, Locklin J. J. Mater. Chem., 2011, 21: 14135.
[37] Han J T, Kim S, Karim A. Langmuir, 2007, 23: 2608.
[38] Nayak A, Liu H W, Belfort G. Angew. Chem. Int. Edit., 2006, 45: 4094.
[39] 王威(Wang W), 王晓振(Wang X Z), 程伏涛(Cheng F T), 俞燕蕾(Yu Y L), 朱玉田(Zhu Y T). 化学进展(Progress in Chemistry), 2011, 23: 1165.
[40] Jiang W H, Wang G J, He Y N, Wang X G, An Y L, Song Y L, Jiang L. Chem. Commun., 2005, 3550.
[41] Blasco E, Pinol M, Oriol L, Schmidt B V K J, Welle A, Trouillet V, Bruns M, Barner-Kowollik C. Adv. Funct. Mater., 2013, 23: 4011.
[42] Li C, Cheng F T, Lv J A, Zhao Y, Liu M J, Jiang L, Yu Y L. Soft Matter, 2012, 8: 3730.

[1] Li Hui, Zhao Yunhui, Yuan Xiaoyan. Anti-Icing Coatings: From Surface Chemistry to Functional Surfaces [J]. Progress in Chemistry, 2012, 24(11): 2087-2096.
[2] Chen Yu, Xu Jiansheng, Guo Zhiguang. Recent Advances in Application of Biomimetic Superhydrophobic Surfaces [J]. Progress in Chemistry, 2012, 24(05): 696-708.
[3] Si Fangfang, Zhang Liang, Zhao Ning, Chen Li, Xu Jian. Superhydrophilic Surfaces: Progress in Preparation Method and Application [J]. Progress in Chemistry, 2011, 23(9): 1831-1840.
[4] Wang Wei, Wang Xiaozhen, Cheng Futao, Yu Yanlei, Zhu Yutian. Light-Driven Soft Actuators Based on Photoresponsive Polymer Materials [J]. Progress in Chemistry, 2011, 23(6): 1165-1173.
[5] Zhu Ying, Liu Mingjie, Wan Meixiang, Jiang Lei. 3D-Micro/Nanostructures of Conducting Polymers Assembled from 1D-Nanostructures and Their Controlling Wettability [J]. Progress in Chemistry, 2011, 23(5): 819-828.
[6] Zhang Yong, Pi Pihui, Wen Xiufang, Zheng Dafeng, Cai Zhiqi, Cheng Jiang. Construction and Application of Wettability Gradient Surfaces [J]. Progress in Chemistry, 2011, 23(12): 2457-2465.
[7] . Progress in Fluorinated (meth)Acrylate Polymers Structures and Surface Wettability [J]. Progress in Chemistry, 2010, 22(06): 1133-1141.
[8] . Application of Ionic Self-Assembly in Preparation of Azobenzene Photoresponsive Materials [J]. Progress in Chemistry, 2010, 22(06): 1125-1132.
[9] Jiang Xiong|Qiao Shengru**|Zhang Chengyu|Hu Haibao|Liu Xiaoju. Hydrophobic Surface and Application to Drag Reduction [J]. Progress in Chemistry, 2008, 20(04): 450-456.
[10] Zhao Ning,Lu Xiaoying,Zhang Xiaoyan,Liu Haiyun,Tan Shuaixia,Xu Jian**. Progress in Superhydrophobic Surfaces [J]. Progress in Chemistry, 2007, 19(06): 860-871.
[11] Jianhai Xu,Mei Li,Yan Zhao,Qinghua Lu**. Advanced of Wetting Behavior Research on the Superhydrophobic Surface with Micro- and Nano-Structures [J]. Progress in Chemistry, 2006, 18(11): 1425-1433.
[12] Ailan Qu,Xiufang Wen,Pihui Pi,Jiang Cheng,Zhuoru Yang**. Studies on Super-Hydrophobic Films [J]. Progress in Chemistry, 2006, 18(11): 1434-1439.
[13] Zhiguang Guo 1,2,Weimin Liu 1**. Progress in Biomimicing of Super-Hydrophobic Surface [J]. Progress in Chemistry, 2006, 18(06): 721-726.