中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (1): 70-78 DOI: 10.7536/PC140818 Previous Articles   Next Articles

• Review •

Application of the Heterogeneous Cyclodextrins in Aqueous Phase Organic Synthesis

Shen Haimin*1, Wu Hongke1, Shi Hongxin1, Ji Hongbing2, Yu Wubin*1   

  1. 1. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
    2. School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21306176), the Scientific Research Launching Foundation of Zhejiang University of Technology (No. G2817101103), and the Zhejiang Provincial Natural Science Foundation (No. LQ14B020002).

PDF ( 896 ) Cited
Export

EndNote

Ris

BibTeX

The applications of the heterogeneous cyclodextrins in aqueous phase organic synthesis are reviewed in detail, including the applications in oxidation, reduction, substitution reaction, addition reaction and photocatalytic reaction. At the same time, the strategies to construct heterogeneous cyclodextrins in the catalysis or promotion of the aqueous phase organic synthesis are stated comprehensively, two strategies being the formation of water-insoluble cross-linking polymer and the grafting cyclodextrins to water-insoluble supporter. It is pointed out that the application of the heterogeneous cyclodextrins in aqueous phase organic synthesis is limited in the simple phase-transfer catalysis and there is fewer relevant literature, just in its infancy stage. The construction of artificial enzyme based on the heterogeneous cyclodextrins would be the development trend and inevitable affiliation in the construction of artificial enzyme based on cyclodextrins, possessing the advantage of the heterogeneous catalyst, meanwhile retaining the excellent function of the cyclodextrin unit in the construction of supramolecular artificial enzyme.

Contents
1 Introduction
2 Oxidation Reaction
3 Reduction Reaction
4 Substitution Reaction
5 Addition Reaction
6 Photocatalytic Reaction
7 Conclusion and outlook

CLC Number: 

[1] Takahashi K. Chem. Rev., 1998, 98: 2013.
[2] 纪红兵(Ji H B), 黄丽泉(Huang L Q), 石东坡(Shi D P), 周贤太(Zhou X T). 有机化学(Chinese Journal of Organic Chemistry), 2008, 28(12): 2072.
[3] Zhao W, Zhong Q. J. Inclusion Phenom. Macrocyclic Chem., 2012, 72: 1.
[4] Breslow R, Dong S D. Chem. Rev., 1998, 98: 1997.
[5] Marinescu L, Bols M. Curr. Org. Chem., 2010, 14: 1380.
[6] Woggon W D. Curr. Org. Chem., 2010, 14: 1362.
[7] 沈海民(Shen H M), 纪红兵(Ji H B). 有机化学(Chinese Journal of Organic Chemistry), 2011, 31(6): 791.
[8] 沈海民(Shen H M), 纪红兵(Ji H B). 有机化学(Chinese Journal of Organic Chemistry), 2012, 32(6): 975.
[9] 王海波(Wang H B), 赵猛(Zhao M), 计亮年(Ji L N), 毛宗万(Mao Z W). 化学进展(Progress in Chemistry), 2013, 25(4): 577.
[10] French R R, Holzer P, Leuenberger M G, Woggon W D. Angew. Chem. Int. Ed., 2000, 39: 1267.
[11] French R R, Holzer P, Leuenberger M, Nold M C, Woggon W D. J. Inorg. Biochem., 2002, 88: 295.
[12] Breslow R, Zhang X, Huang Y. J. Am. Chem. Soc., 1997, 119: 4535.
[13] Yang J, Breslow R. Angew. Chem. Int. Ed., 2000, 39: 2692.
[14] Yang J, Gabriele B, Belvedere S, Huang Y, Breslow R. J. Org. Chem., 2002, 67: 5057.
[15] Dong Z Y, Liu J Q, Mao S Z, Huang X, Yang B, Ren X J, Luo G M, Shen J C. J. Am. Chem. Soc., 2004, 126: 16395.
[16] Dong Z Y, Liang K, Wang C Y, Huang X, Mao S, Li X Z, Xu J Q, Liu J Q, Luo G M, Shen J C. J. Mol. Catal. A-Chem., 2007, 277: 193.
[17] Jiao A Q, Yang N, Wang J P, Toure A, Xu X M, Jin Z Y. J. Inclusion Phenom. Macrocyclic Chem., 2012, 74: 335.
[18] Yin Y Z, Jiao S F, Lang C, Liu J Q. Rsc Adv., 2014, 4: 25040.
[19] Yin Y Z, Jiao S F, Lang C, Liu J Q. Soft Matter, 2014, 10: 3374.
[20] Wang Y Q, Han B H. Chinese J. Chem., 2013, 31: 569.
[21] 沈海民(Shen H M), 武宏科(Wu H K), 纪红兵(Ji H B), 史鸿鑫(Shi H X). 有机化学(Chinese Journal of Organic Chemistry), 2014, 34(4): 630.
[22] 沈海民(Shen H M), 纪红兵(Ji H B), 武宏科(Wu H K), 史鸿鑫(Shi H X). 有机化学(Chinese Journal of Organic Chemistry), 2014, 34(8): 1549.
[23] 沈海民(Shen H M), 纪红兵(Ji H B). 有机化学(Chinese Journal of Organic Chemistry), 2012, 32(9): 1684.
[24] Shen H M, Ji H B. Tetrahedron Lett., 2012, 53: 3541.
[25] Shen H M, Ji H B. Carbohyd. Res., 2012, 354: 49.
[26] Shen H M, Ji H B. Tetrahedron, 2013, 69: 8360.
[27] Marinescu L G, Doyagueez E G, Petrillo M, Fernandez-Mayoralas A, Bols M. Eur. J. Org. Chem., 2010: 157.
[28] Bjerre J, Bols M. J. Inclusion Phenom. Macrocyclic Chem., 2011, 69: 417.
[29] Fenger T H, Bols M. J. Inclusion Phenom. Macrocyclic Chem., 2011, 69: 397.
[30] Zhou Y, Lindback E, Pedersen C M, Bols M. Tetrahedron Lett., 2014, 55: 2304.
[31] Yang Z J, Jiang H G, Zhou X T, Fang Y X, Ji H B. Supramol. Chem., 2012, 24: 379.
[32] Yang Z J, Zeng H, Zhou X T, Ji H B. Tetrahedron, 2012, 68: 5912.
[33] Jiang H G, Yang Z J, Zhou X T, Fang Y X, Ji H B. Chinese J. Chem. Eng., 2012, 20: 784.
[34] Yang Z J, Ji H B. Acs Sustainable Chem. Eng., 2013, 1: 1172.
[35] Yang Z J, Zeng H, Zhou X T, Ji H B. Supramol. Chem., 2013, 25: 233.
[36] Kang Y, Zhou L L, Li X, Yuan J Y. J. Mater. Chem., 2011, 21: 3704.
[37] Zhu J, Wang P C, Lu M. J. Brazil. Chem. Soc., 2013, 24: 171.
[38] Chalasani R, Vasudevan S. Acs Nano, 2013, 7: 4093.
[39] Zhang X, Wu F, Deng N S. Catal. Commun., 2010, 11: 422.
[40] Kiasat A R, Sayyahi S. Catal. Commun., 2010, 11: 484.
[41] Mori K, Yoshioka N, Kondo Y, Takeuchi T, Yamashita H. Green Chem., 2009, 11: 1337.
[42] Schlatter A, Kundu M K, Woggon W D. Angew. Chem. Int. Ed., 2004, 43: 6731.
[43] Schlatter A, Woggon W D. Adv. Synth. Catal., 2008, 350: 995.
[44] Jiao A Q, Yang N, Wang J P, Xu X M, Jin Z Y. J. Inclusion Phenom. Macrocyclic Chem., 2013, 75: 155.
[45] Kiasat A R, Nazari S. Catal. Commun., 2012, 18:102.
[46] Kiasat A R, Nazari S. Catal. Sci. Technol., 2012, 2: 1056.
[47] Kiasat A R, Nazari S. J. Mol. Catal. A-Chem., 2012, 365: 80.
[48] Kiasat A R, Nazari S. J. Inclusion Phenom. Macrocyclic Chem., 2013, 76: 363.
[49] Kiasat A R, Zarinderakht N, Sayyahi S. Chinese J.Chem., 2012, 30: 699.
[50] Kumar V P, Narender M, Sridhar R, Nageswar Y V A, Rao K R. Chem. Commun., 2007, 37: 4331.
[51] Ji H B, Huang L Q, Shen H M, Zhou X T. Chem. Eng. J., 2011, 167: 349.
[52] Ramesh K, Murthy S N, Karnakar K, Nageswar Y V D. Tetrahedron Lett., 2011, 52: 4734.
[53] Nageswar Y V D, Ramesh K, Murthy S N. Tetrahedron Lett., 2011, 52: 2362.
[54] Kiasat A R, Nazari S, Davarpanah J. J. Serb. Chem. Soc., 2014, 79: 401.
[55] Tahir M N, Qamar R U, Adnan A, Cho E, Jung S. Tetrahedron Lett., 2013, 54: 3268.
[56] Doyaguez E G, Rodriguez-Hernandez J, Corrales G, Fernandez-Mayoralas A, Gallardo A. Macromolecules, 2012, 45: 7676.
[57] Khalafi-Nezhad A, Panahi, F. ACS Sustainable Chem. Eng., 2014, 2: 1177.
[58] Kaboudin B, Mostafalu R, Yokomatsu T. Green Chem., 2013, 15: 2266.
[59] Inoue Y, Wada T, Sugahara N, Yamamoto K, Kimura K, Tong L H, Gao X M, Hou Z J, Liu Y. J. Org. Chem., 2000, 65: 8041.
[60] Gao Y Y, Inoue M, Wada T, Inoue Y. J. Inclusion Phenom. Macrocyclic Chem., 2004, 50: 111.
[61] Fukuhara G, Mori T, Wada T, Inoue Y. Chem. Commun., 2005, 4199.
[62] Fukuhara G, Mori T, Wada T, Inoue Y. J. Org. Chem., 2006, 71: 8233.
[63] Lu R H, Yang C, Cao Y J, Wang Z Z, Wada T, Jiao W, Mori T, Inoue Y. Chem. Commun., 2008, 374.
[64] Lu R H, Yang C, Cao Y J, Tong L H, Jiao W, Wada T, Wang Z Z, Mori T, Inoue Y. J. Org. Chem., 2008, 73: 7695.
[65] Yang C, Mori T, Wada T, Inoue Y. New J. Chem., 2007, 31: 697.
[66] Liang W T, Yang C, Nishijima M, Fukuhara G, Mori T, Mele A, Castiglione F, Caldera F, Trotta F, Inoue Y. Beilstein J. Org. Chem., 2012, 8:1305.
[67] Luo L, Liao G H, Wu X L, Lei L, Tung C H, Wu L Z. J. Org. Chem., 2009, 74: 3506.
[68] Ikeda H, Nihei T, Ueno A. J. Org. Chem., 2005, 70: 1237.
[69] Yang C, Fukuhara G, Nakamura A, Origane Y, Fujita K, Yuan D Q, Mori T, Wada T, Inoue Y. J. Photoch. Photobio. A, 2005, 173: 375.
[70] Yang C, Nakamura A, Fukuhara G, Origane Y, Mori T, Wada T, Inoue Y. J. Org. Chem., 2006, 71: 3126.
[71] Nakamura A, Inoue Y. J. Am. Chem. Soc., 2005, 127: 5338.
[72] Ke C F, Yang C, Mori T, Wada T, Liu Y, Inoue Y. Angew. Chem. Int. Edit., 2009, 48: 6675.
[73] Yao J B, Yan Z Q, Ji J C, Wu W H, Yang C, Nishijima M, Fukuhara G, Mori T, Inoue Y. J. Am. Chem. Soc., 2014, 136: 6916.
[74] Qiu H B, Yang C, Inoue Y, Che S N. Org. Lett., 2009, 11: 1793.
[75] Breslow R. Accounts Chem. Res., 1995, 28: 146.

[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[4] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[5] Xiangrui Kong, Jing Dou, Shuzhen Chen, Bingbing Wang, Zhijun Wu. Progress of Synchrotron-Based Research on Atmospheric Science [J]. Progress in Chemistry, 2022, 34(4): 963-972.
[6] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[7] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[8] Huan Song, Qi Zou, Keding Lu. Parameterization and Application of Hydroperoxyl Radicals(HO2) Heterogeneous Uptake Coefficient [J]. Progress in Chemistry, 2021, 33(7): 1175-1187.
[9] Xuemei Wei, Zhanwei Ma, Xinyuan Mu, Jinzhi Lu, Bin Hu. Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous [J]. Progress in Chemistry, 2021, 33(2): 243-253.
[10] Luanluan Xue, Huizeng Li, An Li, Zhipeng Zhao, Yanlin Song. Droplet Self-Propulsion Based on Heterogeneous Surfaces [J]. Progress in Chemistry, 2021, 33(1): 78-86.
[11] Meirong Kang, Fuxiang Jin, Zhen Li, Heyuan Song, Jing Chen. Research and Application of Supported Ionic Liquids [J]. Progress in Chemistry, 2020, 32(9): 1274-1293.
[12] Nana Wang, Guanwu Wang. Investigation into Condensed-Matter Organic Synthesis under Mechanical Milling Conditions [J]. Progress in Chemistry, 2020, 32(8): 1076-1085.
[13] Xia Li, Hongyan Ma, Xiaojuan Nie, Xu Liu, Chengming Bian, Long Xie. Preparation of Star-Like Polymer Based on Cyclodextrin and Its Application [J]. Progress in Chemistry, 2020, 32(7): 935-942.
[14] Chen Hou, Wenqiang Chen, Linhui Fu, Sufeng Zhang, Chen Liang. Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes [J]. Progress in Chemistry, 2020, 32(7): 895-905.
[15] Lida Jia, Qingrui Zhang. Heterogeneous Fenton Catalytic Oxidation for Water Treatment [J]. Progress in Chemistry, 2020, 32(7): 978-988.