中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (12): 1997-2006 DOI: 10.7536/PC140815 Previous Articles   Next Articles

• Review •

Production of Hydrocarbons via Hydrodeoxygenation of Lignin-Derived Phenolic Compounds

Zhang Xinghua, Chen Lungang, Zhang Qi, Long Jinxing, Wang Tiejun, Ma Longlong*   

  1. Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National High Technology Research and Development Program (No. 2012AA101808) and the National Natural Science Foundation of China (No. 51106166, 51106167)

PDF ( 1923 ) Cited
Export

EndNote

Ris

BibTeX

Lignin is the component with the highest carbon content in biomass. The transformation of lignin to high-grade liquid fuels can be achieved via hydrodeoxygenation(HDO) of phenolic intermediates derived from the products of lignin depolymerization. The octane numbers of the hydrodeoxygenation products of phenolic intermediates are quite high. They have vapor pressures and carbon atom number (C6~C10) within the range of gasoline. Thus, these hydrodeoxygenation products would be the most desirable components for a fungible liquid transportation fuel. This is very meaningful to application of lignin. Recently, researches about the hydrodeoxygenation of phenolic compounds develop rapidly. In this paper, the HDO reactions of phenolic compounds using sulfided Mo-based catalyst, noble metal catalyst and inexpensive non-sulfided catalyst are reviewed in detail. It is found that most of the investigated catalysts are bifunctional catalysts, combining the hydrogenation function of active metal with hydrolysis and dehydration of support. The catalytic mechanism for the HDO of phenolic compounds is sketched, and the effects of catalyst supporter on the catalytic activity are also discussed. Furthermore, the current technique challenges are summarized, and future technologic explorations for the efficient hydrodeoxygenation of lignin-derived phenolic compounds are proposed.

Contents
1 Introduction
2 Sulfided Mo-based catalysts
3 Noble catalysts
4 Inexpensive non-sulfided catalysts
5 Effects of supports
6 Conclusions and outlook

CLC Number: 

[1] Singh A, Pant D, Korres N E, Nizami A S, Prasad S, Murphy J D. Bioresour. Technol., 2010, 101: 5003.
[2] Huber G W, Iborra S, Corma A. Chem. Rev., 2006, 106: 4044.
[3] Zakzeski J, Bruijinincx P C, Jongerius A L, Weckhuysen. Chem. Rev., 2010, 110: 3552.
[4] Zhang X, Zhang Q, Wang T, Ma L, Yu Y, Chen L. Bioresour. Technol., 2013, 134: 73.
[5] Zhao C, Lercher J A. Angew. Chem. Int. Ed., 2012, 124: 6037.
[6] Elliott D C. Energy Fuels, 2007, 21: 1792.
[7] Saidi M, Samimi F, Karimipourfard D, Nimmanwudipong T, Gates B C, Rahimpour M R. Energy Environ. Sci., 2014,7: 103.
[8] 王威燕(Wang W Y),张小哲(Zhang X Z),杨运泉(Yang Y Q),杨彦松(Yang Y S),彭会左(Peng H Z),刘文英(Liu W Y). 催化学报(Chinese Journal of Catalysis), 2012, 33: 215.
[9] Laurent E, Delmon B. J. Catal., 1994, 146: 281.
[10] Topsoe H,Clausen B S,Candia R,Wivel C, Mørup S. Bulletin des Societes Chimiques Belges, 1981, 90: 1189.
[11] Kallury R K M R, Restivo W M, Tidwell T T, Boocock D G B, Crimi A, Douglas J. J. Catal., 1985, 96: 535.
[12] Laurent E, Delmon B. Appl. Catal. A, 1994, 109: 77.
[13] Bui V N, Laurenti D, Afanasiev P, Geanter C. Appl. Catal. B, 2011, 101: 239.
[14] Bui V N, Laurenti D, Delichère P. Appl. Catal. B, 2011, 101: 246.
[15] Prins R. Adv. Catal., 2001, 46: 399.
[16] Massoth F E, Politzer P, Concha M C, Murray J S, Jakowshi J, Simons J. J. Phys. Chem. B, 2006,110: 14283.
[17] Mills P, Korlann S, Bussell M E, Reynolds M V, Ovchinnikov M V, Angelici R J, Stinner C, Weber T, Prins R. J. Phys.Chem. A, 2001, 105: 4418.
[18] Lauritsen J V, Bollinger M V, Lægsgaard E, Jacobsen K W, Nørskov J K, Clausen B S, Topsøe H, Besenbacher F. J. Catal., 2004, 221: 510.
[19] Bunch A Y, Ozkan U S. Catal., 2002, 206: 177.
[20] Bunch A Y, Wang X, Ozkan U S. Appl. Catal. A, 2008, 346: 96.
[21] Shabtai J, Nag N K, Massoth F E. J Catal., 1987, 104: 413.
[22] 王威燕(Wang W Y). 湘潭大学博士论文(Doctoral Dissertation of Xiangtan University), 2011.
[23] Bejblová M, Zámostny P, Cerveny L, ? ejka J. Appl.Catal. A, 2005, 296: 169.
[24] Pham T T, Lobban L L, Resasco D E, Mallinson R G. J. Catal., 2009, 266: 9.
[25] Fisk C A, Margan T, Ji Y, Crocker M, Crofcheck C, Lewis S A. Appl. Catal. A, 2009, 358: 150.
[26] Zhao C, Kou Y, Angeliki A L, Li X, Lercher J A. Angew.Chem.Int.Ed., 2009, 48: 3987.
[27] Procházková D, Zámostn Dý P, Bejblová M, ? erven Dý L, ? ejka J. Appl. Catal. A, 2007, 332: 56.
[28] Runnebaum R C, Nimmanwudipong T, Block D E, Gates B C. Catal. Sci. Technol., 2012, 2: 113.
[29] Park H W, Hong U G, Lee Y J, Choi J H, Song I K. Appl. Catal. A, 2012, 437/438: 112.
[30] Gutierrez A, Kaila R K, Honkela M L, Slioor R, Krause A O I. Catal. Today, 2009, 147: 239.
[31] Hong D Y, Miller S J, Agrawal P K, Jones C W. Chem. Commun., 2010, 46: 1038.
[32] Lin Y C, Li C L, Wan H P, Lee H T, Liu C F. Energy Fuels, 2011, 25: 890.
[33] Zhang H, Cheng Y T, Vispute T P, Xiao R, Huber G W. Energy Environ. Sci., 2011, 4: 2297.
[34] Vispute T P, Zhang H, Sanna A, Xiao R, Huber G W. Science, 2010, 330: 1222.
[35] Yan N, Zhao C, Dyson P J. Chemsuschem, 2008, 1: 626.
[36] Liu H, Jiang T, Han B, Liang S, Zhou Y. Science, 2009, 326: 1250.
[37] Zhao C, Wang H Z, Yan N, Xiao C X, Mu X D, Dyson P J, Kou Y. J. Catal., 2007, 250: 33.
[38] Zhao C, Lercher J A. ChemCatChem, 2012, 4: 64.
[39] Ohta H, Kobayashi H, Hara K, Fukuoka A. Chem. Commun, 2011, 47: 12209.
[40] Li K, Wang R, Chen J. Energy Fuels, 2011, 25: 854.
[41] Fan Y, Lu J, Shi G, Liu H, Bao X. Catal. Today, 2007, 125: 220.
[42] Whiffen V M L, Smith K J. Energy Fuels, 2010, 24: 4728.
[43] Whiffen V M L, Smith K J, Straus S K. Appl. Catal. A, 2012, 419/420: 111.
[44] Romero Y, Richard F, Reneme Y, Brunet S. Appl. Catal. A, 2009, 353: 46.
[45] Zhao H Y, Li D, Bui P, Oyama S T. Appl. Catal. A, 2011, 391: 305.
[46] Jongerius A L, Gosselink R W, Dijkstra J, Bitter J H, Bruijnincx P C A, Weckhuysen B M. ChemCatChem, 2013, 5: 2964.
[47] Ghampson I T, Sep Dú lveda C, Garcia R, Radovic L R, García Fierro J L, DeSisto W J, Escalona N. Appl. Catal. A, 2012, 439/440: 111.
[48] 杨运泉(Yang Y Q),周恩深(Zhou E S),贺丹(He D),王威燕(Wang W Y), 刘文英(Liu W Y). 湘潭大学自然科学学报(Natural Science Journal of Xiangtan University),2009, 31(2): 90.
[49] Zhang W,Zhang Y,Zhao L F,Wei W. Energy Fuels, 2010, 24: 2052.
[50] Wang W, Yang Y, Bao J, Luo H. Catal. Commun., 2009, 11: 100.
[51] Wang W, Yang Y, Luo H, Liu W. Catal. Commun., 2010, 11: 803.
[52] 王威燕(Wang W Y),杨运泉(Yang Y Q),罗和安(Luo H A),王锋(Wang F),胡韬(Hu T),刘文英(Liu W Y). 燃料化学学报(Journal of Fuel Chemistry and Technology),2011, 39(5): 367.
[53] Wang W Y,Yang Y Q, Luo H A, Peng H Z, Wang F. Ind. Eng.Chem. Res., 2011, 50: 10936.
[54] 于玉肖(Yu Y X),张兴华(Zhang X H),王铁军(Wang T J),徐莹(Xu Y),马隆龙(Ma L L),张琦(Zhang Q),张丽敏(Zhang L M). 高等学校化学学报(Chemical Journal of Chinese Universities),2013, 34(9): 2178.
[55] Zhao C, Kou Y, Lemonidou A A, Li X, Lercher J A. Chem. Commun., 2010, 46: 412.
[56] Zhang X, Wang T, Ma L, Zhang Q, Jiang T. Bioresour. Technol., 2013, 127: 306.
[57] Zhang X, Zhang Q, Chen L, Xu Y, Wang T, Ma L. Chin. J. Catal. 2014, 35: 302.
[58] Zhang X, Wang T, Ma L, Zhang Q, Huang X, Yu Y. Applied Energy, 2013, 112: 533.
[59] Yakovlev V A, Khromova S A, Sherstyuk O V, Dundich V O, Ermakov D Y, Novopashina V M, Lebedev M Y, Bulavchenko O, Parmon V N. Catal. Today, 2009, 144: 362.
[60] Ardiyanti A R, Khromova S A, Venderbosch R H, Yakovlev V A, Heeres H J. Appl. Catal. B, 2012, 117/118: 105.
[61] Ardiyanti A R, Khromova S A, Venderbosch R H, Yakovlev V A, Melián-Cabrera I V, Heeres H J. Appl. Catal. A, 2012, 449: 121.
[62] Rogatis L D, Montini T, Cognigni A, Olivi L, Fornasiero P. Catal. Today, 2009, 145: 176.
[63] Zhang X, Wang T, Ma L, Zhang Q, Yu Y, Liu Q. Catal. Commun., 2013, 33: 15.
[64] Bykova M V, Ermakov D Y, Khromova S A, Smirnov A A, Lebedev M Y, Yakovlev V A. Catal. Today, 2014, 220: 21.
[65] Deutsch K L, Shanks B H. Appl. Catal. A, 2012, 447/448: 144.
[66] Portjanskaja E, Stepanova K, Klauson D, Preis S. Catal. Today, 2009, 144: 26.
[67] Ruiz P E, Frederick B G, De Sisto W J, Austin R N, Radovic L R, Leiva K, Garcia R, Escalona N, Wheeler M C. Catal. Commun., 2012, 27: 44.
[68] De la Puente G, Gil A, Pis J J, Grange P. Langmuir, 1999, 15: 5800.
[69] Ferrari M, Delmon B, Grange P. Carbon, 2002, 40: 497.
[70] Chen A, Li Y, Chen J, Zhao G, Ma L, Yu Y. ChemPlusChem, 2013, 78: 1370.
[71] Chen J, Zhang W, Chen L, Ma L, Gao H, Wang T. ChemPlusChem, 2013, 78: 142.
[72] Fogassy G, Thegarid N, Schuurman Y, Mirodatos C. Energy Environ. Sci., 2011, 4: 5068.
[73] Zhu X L,Lobban L L,Mallinson R G,Resasco D E. J. Catal., 2011, 281: 21.
[74] Popov A, Kondratieva E, Goupil J M, Mariey L, Bazin P, Gilson J P, Travert A, Maugé F. J. Phys. Chem. C, 2010, 114: 15661.
[75] Popov A, Kondratieva E, Mariey L, Goupil J M, El Fallah J, Gilson J P, Travert A, Maugé F. J. Catal., 2013, 297: 176.
[76] Murali Dhar G, Srinivas B N, Rana M S, Kumar M, Maity S K. Catal. Today, 2003, 86: 45.
[77] Maity S K, Rana M S, Bej S K, Ancheyta-Juarez J, Dhar G M, Rao T P. Catal. Lett., 2001, 72: 115.
[78] 包建国(Bao J G),杨运泉(Yang Y Q),王威燕(Wang W Y),蒋新民(Jiang X M),李娅(Li Y). 燃料化学学报(Journal of Fuel Chemistry and Technology),2011, 39(1): 59.
[79] Zhang X, Long J, Kong W, Zhang Q, Chen L, Wang T, Ma L,Li Y. Energy Fuels, 2014, 28: 2562.
[80] Valle B, Castaño P, Olazar M, Bilbao J, Gayubo A G. J. Catal., 2012, 285: 304.
[81] Laurent E, Delmon B. Appl. Catal. A, 1994, 109: 97.
[82] De Miguel Mercader F, Koehorst P J J, Heeres H J, Kersten S R A, Hogendoorn J A. AIChE J., 2011, 57: 3160.
[83] Klicpera T, Zdrazil M. J.Catal., 2002, 206: 314.
[84] Yang Y, Gilbert A, Xu C C. Appl. Catal. A, 2009, 360: 242.

[1] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[2] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[3] Di Zeng, Xuechen Liu, Yuanyi Zhou, Haipeng Wang, Ling Zhang, Wenzhong Wang. Renewable Aromatic Production from Biomass-Derived Furans [J]. Progress in Chemistry, 2022, 34(1): 131-141.
[4] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[5] Xiangyun Chen, Bing Yuan, Fengli Yu, Congxia Xie, Shitao Yu. Lignin: A Potential Source of Biomass-Based Catalysts [J]. Progress in Chemistry, 2021, 33(2): 303-317.
[6] Xiaozhen Ma, Qing Luo, Dongdong Qin, Jing Chen, Jin Zhu, Ning Yan. Lignin-Based Polyurethane [J]. Progress in Chemistry, 2020, 32(5): 617-626.
[7] Guofu Qin, Yihuan Liu, Fan Yin, Xin Hu, Ning Zhu, Kai Guo. Grafting Modification of Lignin via Ring-Opening Polymerization [J]. Progress in Chemistry, 2020, 32(10): 1547-1556.
[8] Jinglin Zhai, Xin Hu, Chengkou Liu, Ning Zhu, Kai Guo. Grafting Modification of Lignin via Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2019, 31(9): 1293-1302.
[9] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment [J]. Progress in Chemistry, 2019, 31(5): 760-772.
[10] Lingli Zhou, Ruigang Xie, Linjiang Wang. Application of Layered Double Hydroxides in Electrocatalysis [J]. Progress in Chemistry, 2019, 31(2/3): 275-282.
[11] Na Ji, Jingjing Song, Xinyong Diao, Chunfeng Song, Qingling Liu, Mingyuan Zheng. Transformation of Lignin and Its Model Compounds into Value-Added Chemicals Using Sulfide Catalysts [J]. Progress in Chemistry, 2017, 29(5): 563-578.
[12] Xiaojun Shen, Panli Huang, Jialong Wen, Runcang Sun. Research Status of Lignin Oxidative and Reductive Depolymerization [J]. Progress in Chemistry, 2017, 29(1): 162-178.
[13] Lu Yao, Wei Xianyong*, Zong Zhimin, Lu Yongchao, Zhao Wei, Cao Jingpei. Structural Investigation and Application of Lignins [J]. Progress in Chemistry, 2013, 25(05): 838-858.
[14] Wang Zhifei Yang Wen He Nongyue. The Catalyst with the Superparamagnetic Nanoparticles as Its Supporter [J]. Progress in Chemistry, 2009, 21(10): 2053-2059.
[15] . Theoretic Research on the Activation and Oxidation of Hydrocarbons [J]. Progress in Chemistry, 2009, 21(04): 577-587.