中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (11): 1840-1848 DOI: 10.7536/PC140808 Previous Articles   Next Articles

Special Issue: 酶化学

• Review •

Biological and Medical Applications of Duplex-Specific Nuclease

Qiu Xiaopei, Zhang Hong, Jiang Tianlun, Luo Yang*   

  1. Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 81371899), the Twelfth Five Year Plan of PLA, China (No. CWS13C046), the Natural Science Foundation of Chongqing (No. CSTC2013JJB10012), and the Third Military Medical University (No. SWH2013LC13)

PDF ( 2494 ) Cited
Export

EndNote

Ris

BibTeX

Duplex-specific nuclease (DSN) is a type of nuclease, that is isolated from the hepatopancreas of the Kamchatka crab. DSN displays a strong preference for cleaving double-stranded DNA or DNA in DNA-RNA heteroduplexes, and is practically inactive toward single-stranded DNA or RNA. Moreover, this enzyme shows excellent discrimination capability between perfectly and imperfectly matched (up to one mismatch) short duplexes. Owing to its unique feature of cleaving DNA, DSN enzyme is widely applied in the fields of biomedicine and molecular biology, including full-length cDNA library normalization,genomic single-nucleotide polymorphism (SNP) detection and high throughput sequencing. The recent research on DSN are mainly focused on the applications in microRNAs (miRNAs) detection using a DSN-mediated signal amplification strategy. miRNAs are a group of short, endogenous, noncoding RNAs that play vital regulatory roles in physiologic and pathologic processes, including hematopoietic differentiation, cell cycle, regulation, and metabolism. So miRNA is one of the most important biomarkers in individualized treatment, which has great value in terms of improving the diagnosis and treatment of diseases. However, detection of miRNAs is challenging owing to their unique characteristics, including a small size, sequence homology among family members, low abundance in total RNA samples, and susceptibility to degradation in solution. In recent years, isothermal signal amplification and detection of trace miRNA in fluids are reported by many researchers using DSN-mediated biosensors. According to different detection principle of biosensors, DSN-mediated biosensors can be classified as colorimetric, fluorescent, and electrochemical. In this review, we intensively summarize the advantages of DSN in miRNAs detection using DSN-based signal amplification strategy, expanded applications in SNP detection, high throughput sequencing and cDNA library normalization especially when being combined with SMART (Switching Mechanism At 5'end of RNA Transcript) technique.

Contents
1 Introduction
2 The application of DSN enzyme in microRNA detection
2.1 Colorimetric analyses
2.2 Fluorescent analyses
2.3 Electrochemical analyses
3 The application of DSN enzyme in SNP detection
4 Other biological applications of DSN enzyme
4.1 Construction of cDNA Library
4.2 High throughput sequencing
5 Conclusion and outlook

CLC Number: 

[1] Shagin D A, Rebrikov D V, Kozhemyako V B, Altshuler I M, Shcheglov A S, Zhulidov P A, Bogdanova E A, Staroverov D B, Rasskazov V A, Lukyanov S. Genome. Res., 2002, 12(12): 1935.
[2] Bogdanova E A, Shagin D A,Lukyanov S A. Mol. Biosyst., 2008, 4(3): 205.
[3] Bogdanova E A, Barsova E V, Shagina I A, Scheglov A, Anisimova V, Vagner L L, Lukyanov S A, Shagin D A. Methods Mol. Biol., 2011, 729: 85.
[4] Bartel D P. Cell, 2004, 116(2): 281.
[5] Bartel D P. Cell, 2009, 136(2): 215.
[6] Chen X, Ba Y, Ma L J, Cai X, Yin Y, Wang K H, Guo J G, Zhang Y J, Chen J N, Guo X, Li Q B, Li X Y, Wang W J, Zhang Y, Wang J, Jiang X Y, Xiang Y, Xu C, Zheng P P, Zhang J B, Li R Q, Zhang H J, Shang X B, Gong T, Ning G, Wang J, Zen K, Zhang J F, Zhang C Y. Cell Res., 2008, 18(10): 997.
[7] Valoczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S,Havelda Z. Nucleic Acids Res., 2004, 32(22): e175.
[8] Bulfone A, Carotenuto P, Faedo A, Aglio V, Garzia L, Bello A M, Basile A, Andre A, Cocchia M, Guardiola O, Ballabio A, Rubenstein J L R,Zollo M. J. Neurosci., 2005, 25(33): 7586.
[9] Lee J M, Jung Y. Angewandte Chemie, 2011, 50(52): 12487.
[10] Thomson J M, Parker J, Perou C M,Hammond S M. Nature Methods, 2004, 1(1): 47.
[11] Jonstrup S P, Koch J, Kjems J. RNA, 2006, 12(9): 1747.
[12] Cheng Y Q, Zhang X, Li Z P, Jiao X X, Wang Y C, Zhang Y L. Angew. Chem. Int. Ed., 2009, 48(18): 3268.
[13] Shi R, Chiang V L. Biotechniques, 2005, 39(4): 519.
[14] Chen C F, Ridzon D A, Broomer A J, Zhou Z H, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K J,Guegler K J. Nucleic Acids Res., 2005, 33(20): e179.
[15] Wark A W, Lee H J,Corn R M. Angew. Chem. Int. Ed., 2008, 47(4): 644.
[16] Ren Y Q, Deng H M, Shen W, Gao Z Q. Anal. Chem., 2013, 85(9): 4784.
[17] Tian T, Xiao H, Zhang Z G, Long Y L, Peng S, Wang S R, Zhou X, Liu S M, Zhou X. Chem. Eur. J., 2013, 19(1): 92.
[18] Deng H M, Ren Y Q, Shen W, Gao Z Q. Chem. Commun., 2013, 49(82): 9401.
[19] Deng H M, Shen W, Ren Y Q,Gao Z Q. Biosens Bioelectron., 2014, 54: 650.
[20] Shen W, Deng H M, Ren Y Q,Gao Z Q. Chem. Commun., 2013, 49(43): 4959.
[21] Yin B C, Liu Y Q,Ye B C. J. Am. Chem. Soc., 2012, 134(11): 5064.
[22] Lin X Y, Zhang C, Huang Y S, Zhu Z, Chen X,Yang C J. Chem. Commun., 2013, 49(65): 7243.
[23] Degliangeli F, Kshirsagar P, Brunetti V, Pompa P P, Fiammengo R. J. Am. Chem. Soc., 2014, 136(6): 2264.
[24] Xi Q, Zhou D M, Kan Y Y, Ge J, Wu Z K, Yu R Q, Jiang J H. Anal. Chem., 2014, 86(3): 1361.
[25] Li X L, Wang Y C, Zhang X J, Zhao Y J, Liu C H, Li Z P. Acta Chim. Sinica, 2014, 72(3): 395.
[26] Guo S, Yang F, Zhang Y L, Ning Y, Yao Q F,Zhang G J. Anal. Methods-UK, 2014, 6(11): 3598.
[27] Lusi E A, Passamano M, Guarascio P, Scarpa A, Schiavo L. Anal. Chem., 2009, 81(7): 2819.
[28] Poehlmann C, Sprinzl M. Anal. Chem., 2010, 82(11): 4434.
[29] Mhlanga M M, Malmberg L. Methods, 2001, 25(4): 463.
[30] Buetow K H, Edmonson M, MacDonald R, Clifford R, Yip P, Kelley J, Little D P, Strausberg R, Koester H, Cantor C R,Braun A. Proc. Natl. Acad. Sci. U.S.A., 2001, 98(2): 581.
[31] Matsuzaki H, Dong S L, Loi H, Di X J, Liu G Y, Hubbell E, Law J, Berntsen T, Chadha M, Hui H, Yang G R, Kennedy G C, Webster T A, Cawley S, Walsh P S, Jones K W, Fodor S P A, Mei R. Nature Methods, 2004, 1(2): 109.
[32] Xiao Y, Lou X, Uzawa T, Plakos K J, Plaxco K W, Soh H T. J. Am. Chem. Soc., 2009, 131(42): 15311.
[33] Zhou M, Zhai Y, Dong S. Anal. Chem., 2009, 81(14): 5603.
[34] Wang X, Lou X H, Wang Y, Guo Q C, Fang Z, Zhong X H, Mao H J, Jin Q H, Wu L, Zhao H,Zhao J L. Biosens. Bioelectron., 2010, 25(8): 1934.
[35] Lou X, Lewis M S, Gorman C B, He L. Anal. Chem., 2005, 77(15): 4698.
[36] Altshuler I M, Zhulidov P A, Bogdanova E A, Mudrik N N,Shagin D A. Russ. J. Bioorg. Chem., 2005, 31(6): 567.
[37] Muller T, Ensminger I, Schmid K J. BMC Genomics, 2012, 13:673.
[38] Liu M Y, Yuan M, Lou X H, Mao H J, Zheng D M, Zou R X, Zou N L, Tang X R, Zhao J L. Biosens. Bioelectron., 2011, 26(11): 4294.
[39] Weissman S M. Mol. Biol. Med., 1987, 4(3): 133.
[40] Bonaldo M F, Lennon G, Soares M B. Genome. Res., 1996, 6(9): 791.
[41] Zhulidov P A, Bogdanova E A, Shcheglov A S, Vagner L L, Khaspekov G L, Kozhemyako V B, Matz M V, Meleshkevitch E, Moroz L L, Lukyanov S A, Shagin D A. Nucleic Acids Res., 2004, 32(3): 37.
[42] Endege W O, Steinmann K E, Boardman L A, Thibodeau S N,Schlegel R. Biotechniques, 1999, 26(3): 542.
[43] Zhulidov P A, Bogdanova E A, Shcheglov A S, Shagina I A, Wagner L L, Khazpekov G L, Kozhemyako V V, Lukyanov S A,Shagin D A. Russ. J. Bioorg. Chem., 2005, 31(2): 170.
[44] Xie Y F, Wang B C, Li B, Cai Y F, Xie L, Xia Y X, Chang P A, Jiang H Z. Colloids Surf. B, 2007, 60(2): 258.
[45] Ke T, Dong C H, Mao H, Zhao Y Z, Liu H Y, Liu S Y. Agr. Sci. China, 2011, 10(7): 1004.
[46] Zhou W Z, Zhang Y M, Lu J Y,Li J F. Int. J. Mol. Sci., 2012, 13(10): 13150.
[47] Zhang Z Q, Xiao G, Liu R Y, Tan T L, Guan C Y, Wang G H. Afr. J. Agr. Res., 2011, 6(18): 4288.
[48] 蒋敏(Jiang M), 王江(Wang J), 文国松(Wen G S), 徐绍忠(Xu S Z), 查应洪(Zha Y H), 容天聚(Rong T J), 钱雄(Qian X). 中国中药杂志(China Journal of Chinese Materia Media), 2013, 38(4): 504.
[49] Wang J,Xia Y X. J. Insect. Physiol., 2010, 56(8): 998.
[50] Sugahara Y, Carninci P, Itoh M, Shibata K, Konno H, Endo T, Muramatsu M, Hayashizaki Y. Gene, 2001, 263(1): 93.
[51] Wellenreuther R, Schupp I, Poustka A,Wiemann S. BMC Genomics, 2004, 5(1): 36.
[52] Zhu Y, Machleder E, Chenchik A, Li R,Siebert P. Biotechniques, 2001, 30(4): 892.
[53] Yi H, Cho Y J, Won S, Lee J E, Yu H J, Kim S, Schroth G P, Luo S, Chun J. Nucleic Acids Res., 2011, 39(20): 140.
[54] Sanger F, Tuppy H. Biochem. J., 1951, 49(4): 481.
[55] Adamidi C, Wang Y B, Gruen D, Mastrobuoni G, You X T, Tolle D, Dodt M, Mackowiak S D, Gogol-Doering A, Oenal P, Rybak A, Ross E, Alvarado A S, Kempa S, Dieterich C, Rajewsky N, Chen W. Genome. Res., 2011, 21(7): 1193.
[56] Cwiklinski K, Merga J Y, Lake S L, Hartley C, Matthews J B, Paterson S, Hodgkinson J E. Int. J. Parasitol., 2013, 43(11): 917.
[57] Miller D F B, Yan P S, Buechlein A, Rodriguez B A, Yilmaz A S, Goel S, Lin H, Collins-Burow B, Rhodes L V, Braun C, Pradeep S, Rupaimoole R, Dalkilic M, Sood A K, Burow M E, Tang H X, Huang T H, Liu Y L, Rusch D B,Nephew K P. Methods, 2013, 63(2): 126.

[1] Wang Jin-Ye, Song Chen, Xu Jing-Kun, Ding Bao-Quan. The Research Progress of Organizing Functional Nanomaterials with DNA Origami [J]. Progress in Chemistry, 0, (): 0-0.
[2] Xiaoyao Yin, Fei Li, Xiaochen Bo, Zhigang Luo, Xiaolei Zuo. Computation in Chemistry:A Summary of the Development and Models of DNA Computing [J]. Progress in Chemistry, 2017, 29(11): 1297-1315.
[3] Jiang Yu, Tan Lianjiang, Yin Yan, Shen Yu-Mei, Gong Bing, Shao Zhifeng. Cleavable Linkers in DNA Sequencing by Synthesis [J]. Progress in Chemistry, 2016, 28(1): 58-66.
[4] Dong Shibiao, Jiao Xiong, Zhao Rongtao, Xu Jinkun, Song Hongbin, Hao Rongzhang. The DNA Tetrahedron Nanostructure Materials and Their Applications [J]. Progress in Chemistry, 2015, 27(9): 1191-1197.
[5] Wang Jiamin, Shi Lei, Liu Haiyang. The Interaction of Corrole and Its Metal Complex with DNA and Their Anti-Tumor Activity [J]. Progress in Chemistry, 2015, 27(6): 755-762.
[6] Yang Yin, Fan Mengxing, Guo Zhihui, Zhang Hui, Wu Ping, Cai Chenxin. Electrochemical Analysis for DNA Methylation [J]. Progress in Chemistry, 2014, 26(12): 1977-1986.
[7] Fan Xiao, Li Yanyan, Liu Yingya, Cao Changsheng, Li Haitao. Application of Single Molecule Fluorescence Techniques on Telomere and Telomerase [J]. Progress in Chemistry, 2014, 26(12): 1987-1996.
[8] Song Chunyuan, Yang Yanjun, Wang Lianhui. SERS-Based Nucleic Acid Detection [J]. Progress in Chemistry, 2014, 26(09): 1516-1526.
[9] Jia Sisi, Chao Jie, Fan Chunhai, Liu Huajie. DNA Origami Nanoreactors [J]. Progress in Chemistry, 2014, 26(05): 695-705.
[10] Li Zhiguo, Zhang Lingling. Influence Factors on the Performance of DNA Self-Assembled Monolayers on Gold [J]. Progress in Chemistry, 2014, 26(05): 846-855.
[11] Wu Yiping, Guo Lianghong. Photoelectrochemical Sensors for the Detection of DNA Damage [J]. Progress in Chemistry, 2014, 26(01): 1-9.
[12] Liu Baoquan, Liu Qiang, Zhang Ji, Fan Shengdi, Yu Xiaoqi. Transfection of Nucleic Acids Mediated by Macrocyclic Polyamine-Based Liposomes [J]. Progress in Chemistry, 2013, 25(08): 1237-1245.
[13] Duan Xiaoli, Fu Yan, Zhang Jinli, Li Wei. Chiral Assembled Materials and Their Application in Enantiomeric Resolution [J]. Progress in Chemistry, 2013, 25(08): 1272-1282.
[14] Zhu Debin*, Ma Wenge, Xing Xiaobo . Application of Electrochemiluminescence Assay in Nucleic Acid Detection [J]. Progress in Chemistry, 2012, 24(12): 2367-2373.
[15] Dong Haifeng, Zhang Xueji. DNA Biosensors Based on Functional Nanoprobes [J]. Progress in Chemistry, 2012, 24(11): 2247-2254.