中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (4): 424-435 DOI: 10.7536/PC140807 Previous Articles   Next Articles

• Review and evaluation •

The Durability Research on the Proton Exchange Membrane Fuel Cell for Automobile Application

Wang Cheng*1, Wang Shubo1, Zhang Jianbo2, Li Jianqiu2, Wang Jianlong1, Yang Minggao2   

  1. 1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
    2. State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.U1462112),the Program of International S&T Cooperation(No.2013DFG41460,2013DFG60080),the State Key Basic Science Research Project of China(No.2012CB215401),and the National High Technology Research and Development Program of China(No.2013AA110202).
PDF ( 3575 ) Cited
Export

EndNote

Ris

BibTeX

Through over a decade continuous research and development all over the world, the performances of proton exchange membrane fuel cell (PEMFC) for automobile application, such as energy efficiency, power density and specific power of the stack, and the system with low-temperature startup, have achieved breakthrough progress. A new round of fuel cell automobile commercialization now has been approaching. However, the durability of the automobile PEMFC systems, which include massive scale of problems, hasnt met the commercialization target. The durability is the primary problem of vehicle fuel cell commercialization and become the ultimate obstacle of the fuel cell industrialization in the field of automobile application. The problem of durability for automobile PEMFC application has attracted lots of attention worldwide. In this paper, the degradation mechanics of key materials and components in the PEMFC, including catalyst, support material, proton exchange membrane, ionomer in catalyst layer, gas diffusion layer and metal bipolar plate, have been summarized and analyzed in detail. Meanwhile the mitigation strategies for the degradations are also summarized and some novel strategies for durability mitigation are proposed. This paper is instructive for the understanding and promotion of the durability for the PEMFC.

Contents
1 Introduction
2 The degradation of proton exchange membrane fuel cell
2.1 The degradation mechanism of Pt catalyst
2.2 The degradation mechanism of carbon support for catalyst
2.3 The degradation of proton exchange membrane and electrode ionomer
2.4 The degradation of gas diffusion layer
2.5 The degradation of metal bipolar plate
3 The mitigation strategy for degradation
3.1 The mitigation of Pt degradation
3.2 The mitigation of carbon degradation
3.3 The mitigation of proton exchange membrane degradation
3.4 The mitigation of gas diffusion layer degradation
3.5 The mitigation of bipolar plate degradation
4 Conclusion

CLC Number: 

[1] (a)欧阳明高(OuYang M G). 内燃机学报(Transactions of CSICE), 2008, 26:107.;(b)Sung W, Song Y, Yu K, Lim T.SAE Int.J.Engines,2010,3(1): 768.; (c)Yokoyama T.California Air Resources Board ZEV Symposium, Sacramento C A, Sep., 2009.21.;(d)李建秋(Li J Q),方川(Fang C),徐梁飞(Xu L F).汽车安全与节能学报(Journal of Automotive Safety and Energy),2014,5(1):17.;(e)Jones D J. Global Change,Energy Issues and Regulation Policies.Netherlands:Springer,2013:161.;(f)The Fuel Cell Technical Team.Fuel Cell Technical Team Roadmap,Washington:DOE,June 2013.;(g)Matthew M.Polymer Electrolyte Fuel Cell Degradation.Dutch:Elsevier,2011.112.
[2] Pei P C, Chen H C. Applied Energy, 2014, 125: 60.
[3] Wilson M S, Garzon F H, Sickafus K E, Gottesfeld S. J. Electrochem. Soc., 1993, 140: 2872.
[4] Ferreira P J, la O’ G J, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger H A. J. Electrochem. Soc., 2005, 152: A2256.
[5] Shao Y, Yin G, Gao Y. J. Power Sources, 2007, 171: 558.
[6] Zhu W, Zheng J P, Liang R, Wang B, Zhang C, Au G, Plichta E J. J. Electrochem. Soc., 2009, 156 (9): B1099.
[7] Darling R M, Meyers J P. J. Electrochem. Soc., 2003, 150 (11): A1523.
[8] Darling R M, Meyers J P. J. Electrochem. Soc., 2005, 152 (1): A242.
[9] Pourbaix M. National Association of Corrosion Engineers, 1979. 453.
[10] Maass S, Finsterwalder F, Frank G, Hartmann R, Merten C. J. Power Sources, 2008, 176: 444.
[11] Makharia R, Kocha S S, Yu P T, Sweikart M A, Gu W, Wagner F T, Gasteiger H A. ECS Transactions, 2006, 1(8): 3.
[12] Liu Z Y, Zhang J L, Yu P T, Zhang J X, Makharia R, More K L, Stachc E A. J. Electrochem. Soc., 2010, 157 (6): B906.
[13] Kinoshita K, Bett J. Carbon, 1973, 11: 237.
[14] Roen L M, Paik C H, Jarvi T D. Electrochem. Solid-State Lett., 2004, 7 (1): A19.
[15] Li W, Lane A M. Electrochim. Acta, 2010, 55: 6926.
[16] Taniguchi A, Akita T, Yasuda K, Miyazaki Y. J. Power Sources, 2004, 130: 42.
[17] 王丽娜(Wang L N), 刘向(Liu X), 张伟(Zhang W), 张新荣(Zhang X R), 孙毅(Sun Y), 蒋永伟(Jiang Y W), 朱荣杰(Zhu R J). 第30届全国化学与物理电源学术年会论文集(Proceeding of 30th Annual Meeting on Power Sources). 上海(Shanghai), 2013. 467.
[18] Chen J, Siegel J B, Matsuura T, Stefanopoulou A G. J. Electrochem. Soc., 2011,158 (9): B1164.
[19] Reiser C A, Bregoli L, Patterson T W, Yi J S, Yang J D, Perry M L, Jarvi T D. Electrochem. Solid-State Lett., 2005, 8 (6): A273.
[20] Dross R, Maynard B. ECS Trans., 2007, 11 (1): 1059.
[21] Tang H, Qi Z, Ramani M, Elter J F. J. Power Sources, 2006, 158: 1306.
[22] Carter R N, Brady B K, Subramanian K, Tighe T, Gasteiger H A. ECS Trans., 2007, 11 (1): 423.
[23] Young A P, Stumper J, Gyenge E. J. Electrochem. Soc., 2009, 156 (8): B913.
[24] Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath J E, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K, Iwashita N. Chem. Rev., 2007, 107: 3904.
[25] Jo Y Y, Cho E, Kim J H, Lim T H, Oh I H, Kim S K, Kim H J, Jang J H. J. Power Sources, 2011, 196: 9906.
[26] Fairweather J D, Spernjak D, Weber A Z, Harvey D, Wessel S, Hussey D S, Jacobson D L, Artyushkova K, Mukundan R, Borup R L. J. Electrochem. Soc., 2013, 160(9): F980.
[27] De Bruijn F A, Dam V A T, Janssen G J M. Fuel Cells, 2008, 8(2): 3.
[28] Huang C, Tan K S, Lin J, Tan K L. Chem. Phys. Lett., 2003, 371: 80.
[29] Healy J, Hayden C, Xie T, Olson K, Waldo R, Brundage R, Gasteiger H. J. Abbott. Fuel Cells, 2005, 5: 302.
[30] Collier A, Wang H, Yuan X Z, Zhang J, Wilkinson D P. Int. J. Hydrogen Energy, 2006, 31: 1838.
[31] Inaba M, Kinumoto T, Kiriake M, Umebayashi R, Tasaka A, Ogumi Z. Electrochim. Acta, 2006, 51: 5746.
[32] Curtin D E, Lousenberg R D, Henry T J, Tangeman P C, Tisack M E. J. Power Sources, 2004, 131: 41.
[33] 王芳(Wang F). 武汉理工大学硕士论文(Master Dissertation of Wuhan University of Technology), 2008.
[34] Escobedo G, Raiford K, Nagarajan G S, Schwiebert K E. ECS Trans., 2006, 1: 303.
[35] Tang H, Peikang S, Jiang S P, Wang F, Pan M. J. Power Sources, 2007, 170: 85.
[36] Kreitmeier S, Schuler G A, Wokaun A, Büchi F N. J. Power Sources, 2012, 212: 139.
[37] Endoh E, Terazono S, Widjaja H, Takimoto Y. Electrochem. Solid-State Lett., 2004, 7(7): A209.
[38] Le Canut J, Abouatallah R M, Harrington D A. J. Electrochem. Soc., 2006, 153(5): A857.
[39] Kadyk T, Hanke-Rauschenbach R, Sundmacher K. Int. J. Hydrogen Energy, 2012, 37(9): 7689.
[40] Laconti A B, Hamdan M, McDonald R C. Handbook of Fuel Cells: Fundamentals, Technology, and Applications. NY: Wiley, 2003. 647.
[41] Ralph T R, Hogarth M P. Platinum Metals Rev., 2002, 46: 117.
[42] Xie J, Wood D L, Wayne D M, Zawodzinski T A, Atanassov P, Borup R L. J. Electrochem. Soc., 2005, 152 (1): A104.
[43] Zhang F Y, Advani S G, Prasad A K, Boggs M E, Sullivan S P, Beebe T P. Electrochim. Acta, 2009, 54: 4025.
[44] Wood D L, Chlistunoff J, Majewski J, Borup R L. J. Am. Chem. Soc., 2009, 131: 18096.
[45] St-Pierre J, Jia N. J. New Mater. Electrochem. Syst., 2002, 5: 263.
[46] Oszcipok M, Riemann D, Kronenwett U, Kreideweis M, Zedda M. J. Power Sources, 2005, 145: 407.
[47] Cindrella L, Kannan A M, Lin J F, Saminathan K, Ho Y, Lin C W, Wertz J. J. Power Sources, 2009, 194: 146.
[48] Seidenberge K, Wilhelm F, Schmitt T, Lehnert W, Scholta J. J. Power Sources, 2011, 196: 5317.
[49] Schulze M, Wagner N, Kaz T, Friedrich K A. Electrochim. Acta, 2007, 52: 2328.
[50] Frisk J W, Hicks M T, Atanasoski R T, Boand W M, Schmoeckel A K, Kurkowski M J. Fuel Cell Seminar. San Antonio: Elsevier, 2004. 10.
[51] Owejan J E, Yu P T, Makharia R. ECS Trans., 2007, 11 (1): 1049.
[52] Frisk J, Boand W, Hicks M, Kurkowski M, Atanasoski R, Schmoeckel A. Fuel Cell Seminar. San Antonio: Elsevier, 2004. 1.
[53] Aoki T, Matsunaga A, Ogami Y, Maekawa A, Mitsushima S, Ota K, Nishikawa H. J. Power Sources, 2010, 195: 2182.
[54] Mehta V, Cooper J S. J. Power Sources, 2003, 114: 32.
[55] De Bruijn F. Green Chem., 2005, 7: 132.
[56] Brett D J L, Brandon N P. J. Fuel Cell Sci. Technol., 2007, 4: 29.
[57] Wind J, Späh R, Kaiser W, Böhm G. J. Power Sources, 2002, 105: 256.
[58] Pozio A, Silva R F, de Francesco M, Giorgi L. Electrochim. Acta, 2003, 48: 154.
[59] Makkus R C, Janssen A H H, de Bruijn F A, Mallant R K A M. J. Power Sources, 2000, 86: 274.
[60] Eom K, Cho E, Nam S W, Lim T H, Jang J H, Kim H J, Hong B K, Yang Y C. Electrochim. Acta, 2012, 78: 324.
[61] Wu J, Yuan X Z, Martin J J, Wang H, Zhang J, Shen J, Wu S, Merida W. J. Power Sources, 2008, 184: 104.
[62] Stassi A, Gatto I, Monforte G, Baglio V, Passalacqua E, Antonucci V, Aricò A S. J. Power Sources, 2012, 208: 35.
[63] Travitsky N, Ripenbein T, Golodnitsky D, Rosenberg Y, Burshtein L, Peled E. J. Power Sources, 2006, 161(2): 782.
[64] Colón-Mercado H R, Popov B N. J. Power Sources, 2006, 155: 253.
[65] Wan L J, Moriyama T, Ito M, Uchida H, Watanabe M. Chem. Commun., 2002, 1: 58.
[66] Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Appl. Catal. B, 2005, 56: 9.
[67] Yu P, Pemberton M, Plasse P. J. Power Sources, 2005, 144: 11.
[68] Zhang J, Sasaki K, Sutter E, Adzic R R. Science, 2007, 315: 200.
[69] Antolini E, Salgado J R C, Gonzalez E R. J. Power Sources, 2006, 160: 957.
[70] Debe M K, Schmoeckel A K, Vernstrom G D, Atanasoski R. J. Power Sources, 2006, 161: 1002.
[71] Roy S C, Harding A W, Russell A E, Thomas K M. J. Electrochem. Soc., 1997, 144: 2323.
[72] Shao Y Y, Yin G P, Gao Y Z, Shi P F. J. Electrochem. Soc., 2006, 153: A1093.
[73] Pollet B G, Staffell I, Shang J L. Electrochim. Acta, 2012, 84: 235.
[74] Mathias M F, Makharia R, Gasteiger H A, Conley J J, Fuller T J, Gittleman G J, Kocha S S, Miller D P, Mittelsteadt C K, Xie T, Yan S G, Yu P T. Electrochem. Soc. Inter., 2005, 14: 24.
[75] Borup R L, Davey J R, Garzon F H, Wood D L, Inbody M A. J. Power Sources, 2006, 163: 76.
[76] Wheat W S, Meltser M A, Masten D A. US 8288049-B2, 2004.
[77] Makino S. Japanese Patent 2004111243, 2004.
[78] Knights S D, Colbow K M, St-Pierre J, Wilkinson D P. J. Power Sources, 2004, 127: 127.
[79] Cho E A, Ko J J, Ha H Y, Hong S A, Lee K Y, Lim T W, Oh I H. J. Electrochem. Soc., 2004, 151: A661.
[80] Sun X, Saha M S. London: Springer, 2008. 655.
[81] Sharma S, Pollet B G. J. Power Sources, 2012, 208: 96.
[82] Shrestha S, Liu Y, Mustain W E. Catal. Rev., 2011, 53(3): 256.
[83] Rajalakshmi N, Lakshmi N, Dhathathreyan K S. International Journal of Hydrogen energy, 2008, 33: 7521.
[84] Kakinuma K, Chino Y, Senoo Y, Uchida M, Kamino T, Uchida H, Deki S, Watanabe M. Electrochimica Acta, 2013, 110: 316.
[85] Yin S B, Mu S C, Lv H F, Cheng N C, Pan M, Fu Z Y. Applied Catalysis B: Environmental, 2010, 93: 233.
[86] Kimmel Y, Yang L, Kelly T G, Rykov S A, Chen J G. Journal of Catalysis, 2014, 312: 216.
[87] Ou Y W, Cui X L, Zhang X Y, Jiang Z Y. J. Power Sources, 2010, 195: 1365.
[88] Atanasoski R T, Atanasoska L L, Cullen D A, Haugen G M, More K L, Vernstrom G D. Electrocatal., 2012, 284.
[89] Genorio B, Strmcnik D, Subbaraman R, Tripkovic D, Karapetrov G, Stamenkovic V R, Pejovnik S, Markovic N M. Nat. Mater., 2010, 9.
[90] Kim J H, Cho E A, Jang J H, Kim H J, Lim T H, Oh I H, Ko J J, Oh S C. J. Electrochem. Soc., 2010, 157: B104.
[91] Ofstad A B, Davey J R, Sunde S, Borup R L. ECS Trans., 2008, 16 (2): 1301.
[92] Reiser C A, Yang D, Sawyer R D. US 2005147855-A1, 2005.
[93] Yu P T, Wagner F T. US 2006046106-A1, 2006.
[94] Kim J H, Cho E A, Jang J H, Kim H J, Lim T H, Oh I H, Ko J J, Oh S C. J. Electrochem. Soc., 2010, 157 (1): B118.
[95] Perry M L, Patterson T W, Reiser C. ECS Trans., 2006, 3 (1): 783.
[96] Yu Y, Wanga G, Tu Z, Zhan Z, Pan M. Electrochim. Acta, 2012, 71: 181.
[97] Taniguchi A, Akita T, Yasuda K, Miyazaki Y. Int. J. Hydrogen Energy, 2008, 33: 2323.
[98] Gerard M, Poirot-Crouvezier J P, Hissel D, Pera M C. Int. J. Hydrogen Energy, 2010, 35: 12295.
[99] Gubler L, Kuhn H, Schmidt T J, Scherer G G, Brack H P, Simbeck K. Fuel Cells, 2004, 4: 196.
[100] Gubler L, Gürsel S A, Scherer G G. Fuel Cells, 2005, 5: 317.
[101] Yu J R, Yi B L, Xing D M, Liu F Q, Shao Z G, Fu Y Z, Zhang H M. Phys. Chem. Chem. Phys, 2003, 5: 611.
[102] Trogadas P, Parrondo J, Ramani V. Electrochemical and Solid State Letters, 2008, 11: B113.
[103] Ramani V, Kunz H R, Fenton J M. J. Power Sources, 2005, 152: 182.
[104] Haugen G M, Meng F, Aieta N, Horan J L, Kuo M C, Frey M H, Hamrock S J, Herring A M. ECS Trans., 2006, 3: 551.
[105] Liu Y H, Yi B L, Shao Z G. Electrochemical and Solid State Letters, 2006, (9): A356.
[106] Pan M, Yang X S, Shen C H. Composite Materials, 2003, (iii): 385.
[107] Hommura S, Kawahara K, Shimohira T. Journal of the Electrochemical Society, 2008, 155: A29.
[108] Liu W, Ruth K, Rusch G. J. New Mater. Electrochem. Syst., 2001, 4: 227.
[109] Xu H, Wu M, Liu Y, Mittal V, Vieth R, Kunz H R, Bonville L J, Fenton J M. ECS Trans., 2006, 3: 561.
[110] Jung G, Chuang K, Jao T, Yeh C, Lin C. Appl Energy, 2012, 100: 81.
[111] Bose A, Babburi P, Kumar R, Myers D, Mawdsley J, Milhuff J. J. Power Sources, 2013, 243: 964.
[112] Liu D, Case S. J. Power Sources, 2006, 162(1): 521.
[113] Borup R L. Fuel Cell Durability Conference, Washington DC: Elsevier, 2005. 8.
[114] Tawfik H, Hung Y, Mahajan D. J. Power Sources, 2007, 163: 755.
[115] Lee S J, Huang C H, Lai J J, Chen Y P. J. Power Sources, 2004, 131: 162.
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Li Zhou, Abdelkrim Yasmine, Zhiguo Jiang, Zhongzhen Yu, Jin Qu. Microplastics: A Review on Biological Effects, Analysis and Degradation Methods [J]. Progress in Chemistry, 2022, 34(9): 1935-1946.
[3] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[4] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[5] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[6] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[7] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[8] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[9] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[10] Yin Xie, Liyang Zhang, Peijin Ying, Jiacheng Wang, Kuan Sun, Meng Li. Intensified Field-Effect of Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(9): 1571-1585.
[11] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[12] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[13] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.
[14] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[15] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.