中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (2/3): 146-156 DOI: 10.7536/PC140804 Previous Articles   Next Articles

• Review •

External Stimuli Regulated Surface-Initiated Atom Transfer Radical Polymerization

Li Bin1,2, Yu Bo1, Ye Qian1, Zhou Feng*1   

  1. 1. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the Key Research Program of the Chinese Academy of Sciences (No.KJZD-EW-M01), the National Science Foundation for Distinguished Young Scholars of China (No. 21125316) and the National Natural Scence Foundation of China(No. 21204095).

PDF ( 1865 ) Cited
Export

EndNote

Ris

BibTeX

Surface-initiated atom transfer radical polymerization (SI-ATRP) has become an indispensable tool for tailoring of structures and properties of the polymer/inorganic and polymer/organic surfaces. However, traditional SI-ATRP always suffers from limitations such as rigorous synthetic protocols, heavy consumption of monomers and limited ability to control the polymerization process. Recently, many efforts have been taken to dramatically increase the scope of living radical polymerization through the development of new strategies to regulate the activation and deactivation steps by using a wide range of external stimuli, including electrochemistry, light and chemical reagent. We expect that this review will present a broad introduction to the field of the SI-ATRP research.

Contents
1 Introduction
2 Surface-initiated atom transfer radical polymerization(SI-ATRP)
2.1 Initiation
2.2 Propagation
2.3 Termination
3 New methods for SI-ATRP
3.1 Electrochemically mediated ATRP
3.2 Photochemically mediated ATRP
3.3 Chemicals mediated ATRP
4 Characterization of the polymer brush
5 Conclusion

CLC Number: 

[1] De Gennes P G. Adv. Colloid Interface Sci., 1987, 27: 189.
[2] Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H A. Chem. Rev., 2009, 109: 5437.
[3] Azzaroni O, Brown A A, Huck W T S. Adv. Mater., 2007, 19: 151.
[4] He X, Yang W, Pei X. Macromolecules, 2008, 41: 4615.
[5] Zhou F, Huck W T S. Phys. Chem. Chem. Phys., 2006, 8: 3815.
[6] Liu X, Ye Q, Yu B, Liang Y, Liu W, Zhou F. Langmuir, 2010, 26: 12377.
[7] Stuart M A C, Huck W T S, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat. Mater., 2010, 9: 101.
[8] Zhou F, Shu W, Welland M E, Huck W T S. J. Am. Chem. Soc., 2006, 128: 5326.
[9] Zhou F, Biesheuvel P M, Choi E Y, Shu W, Poetes R, Steiner U, Huck W T S. Nano Lett., 2008, 8: 725.
[10] Ma H, Hyun J, Stiller P, Chilkoti A. Adv. Mater., 2004, 16: 338.
[11] Ye Q, Gao T, Wan F, Yu B, Pei X, Zhou F, Xue Q. J. Mater. Chem., 2012, 22: 13123.
[12] Wan F, Pei X, Yu B, Ye Q, Zhou F, Xue Q. ACS Appl. Mater. Interfaces, 2012, 4: 4557.
[13] Muszanska A K, Rochford E T, Gruszka A, Bastian A A, Busscher H J, Norde W, van der Mei H C, Herrmann A. Biomacromolecules, 2014, 15: 2019.
[14] Zhang N, Pompe T, Amin I, Luxenhofer R, Werner C, Jordan R. Macromol. Biosci., 2012, 12: 926.
[15] Mallik A K, Rahman M M, Czaun M, Takafuji M, Ihara H. J. Chromatogr. A, 2008, 1187: 119.
[16] Rahman M M, Czaun M, Takafuji M, Ihara H. Chem. Eur. J., 2008, 14: 1312.
[17] Wei Q, Cai M, Zhou F, Liu W. Macromolecules, 2013, 46: 9368.
[18] Li B, Yu B, Wang X L, Guo F, Zhou F. Chin. J. Polym. Sci., 2015, 33: 163.
[19] 魏强兵(Wei Q B), 蔡美荣(Cai M R), 周峰(Zhou F). 高分子学报 (Acta Polymerica Sinica), 2012, 10: 1102.
[20] Kim M S, Khang G, Lee H B. Prog. Polym. Sci., 2008, 33: 138.
[21] Otsuka H, Nagasaki Y, Kataoka K. Curr. Opin. Colloid Interface Sci., 2001, 6: 3.
[22] Zhang B, Yu B, Zhou F, Liu W. J. Mater. Chem. A, 2013, 1: 8587.
[23] Liu J, Ma S, Wei Q, Jia L, Yu B, Wang D, Zhou F. Nanoscale, 2013, 5: 11894.
[24] Milner S T. Science, 1991, 251: 905.
[25] Balazs A C, Singh C, Zhulina E, Chern S S, Lyatskaya Y, Pickett G. Prog. Surf. Sci., 1997, 55: 181.
[26] Zhao B, Brittain W J. Prog. Polym. Sci., 2000, 25: 677.
[27] Halperin A, Tirrell M, Lodge T P. Adv. Polym. Sci., 1922, 100: 31.
[28] Brandani P, Stroeve P. Macromolecules, 2003, 36: 9492.
[29] Tran Y, Auroy P. J. Am. Chem. Soc., 2001, 123: 3644.
[30] Sofia S J, Premnath V, Merrill E W. Macromolecules, 1998, 31: 5059.
[31] Roberts C, Chen C S, Mrksich M, Valerie M, Ingber D E, Whitesides G M. J. Am. Chem. Soc., 1998, 120: 6548.
[32] Tsukruk V V. Prog. Polym. Sci., 1997, 22: 247.
[33] Zdyrko B, Luzinov I. Macromol. Rapid Commun., 2011, 32: 859.
[34] Rühe J, Knoll W. J. Macromol. Sci. Polym. Rev., 2002, C42: 91.
[35] Jordan R, Ulman A, Kang J F, Rafailovich M H, Sokolov J. J. Am. Chem. Soc., 1999, 121: 1016.
[36] Advincula R. Adv. Polym. Sci., 2006, 197: 107.
[37] Zhao B, Brittain W J. J. Am. Chem. Soc., 1999, 121: 3557.
[38] Husemann M, Mecerreyes D, Hawker C J, Hedrick J L, Shah R, Abbott N L. Angew. Chem. Int. Ed., 1999, 38: 647.
[39] Kratzmüller T, Appelhans D, Braun H G. Adv. Mater., 1999, 11: 555.
[40] Zeng H L, Gao C, Yan D Y. Adv. Funct. Mater., 2006, 16: 812.
[41] Kim N Y, Jeon N L, Choi I S, Takami S, Harada Y, Finnie K R, Girolami G S, Nuzzo R G, Whitesides G M, Laibinis P E. Macromolecules, 2000, 33: 2793.
[42] Weck M, Jackiw J J, Rossi R R, Weiss P S, Grubbs R H. J. Am. Chem. Soc., 1999, 121: 4088.
[43] Schmelmer U, Jordan R, Geyer W, Eck W, Golzhauser A, Grunze M, Ulman A. Angew. Chem. Int. Ed., 2003, 42: 559.
[44] Prucker O, Schimmel M, Tovar G, Knoll W, Rühe J. Adv. Mater., 1998, 10: 1073.
[45] Azzaroni O. J. Polym. Sci. Part A: Polym. Chem., 2012, 50: 3225.
[46] Chen T, Ferris R, Zhang J, Ducker R, Zauscher S. Prog. Polym. Sci., 2010, 35: 94.
[47] Ma H, Wells M, Beebe T P, Chilkoti A. Adv. Funct. Mater., 2006, 16: 640.
[48] Fan X, Lin L, Dalsin J L, Messersmith P B. J. Am. Chem. Soc., 2005, 127: 15843
[49] Zhou F, Zheng Z, Yu B, Liu W, Huck W T S. J. Am. Chem. Soc., 2006, 128: 16253.
[50] Edmondson S, Osborne V L, Huck W T S. Chem. Soc. Rev., 2004, 33: 14.
[51] Andruzzi L, Hexemer A, Li X, Ober C K, Kramer E J, Galli G, Chiellini E, Fischer D A. Langmuir, 2004, 20: 10498.
[52] Stenzel M H, Zhang L, Huck W T S. Macromol. Rapid Commun., 2006, 27: 1121.
[53] Kitano H, Liu Y, Tokuwa K I, Li L, Iwanaga S, Nakamura M, Kanayama N, Ohno K, Saruwatari Y. Eur. Polym. J., 2012, 48: 1875.
[54] Krause J E, Brault N D, Li Y, Xue H, Zhou Y, Jiang S. Macromolecules, 2011, 44: 9213.
[55] Abdulhussain S, Breitzke H, Ratajczyk T, Grünberg A, Srour M, Arnaut D, Weidler H, Kunz U, Kleebe H J, Bommerich U, Bernarding J, Gutmann T, Buntkowsky G. Chem. Eur. J., 2014, 20: 1159.
[56] Liu Q, Singh A, Liu L. Biomacromolecules, 2013, 14: 226.
[57] Wang J S, Matyjaszewski K. J. Am. Chem. Soc., 1995, 117: 5614.
[58] Kato M, Kamigaito M, Sawamoto M, Higashimura T, Macromolecules, 1995, 28: 1721.
[59] Percec V, Barboiu B. Macromolecules, 1995, 28: 7970.
[60] Matyjaszewski K, Xia J. Chem. Rev., 2001, 101: 2921.
[61] Tsarevsky N V, Matyjaszewski K. Chem. Rev., 2007, 107: 2270.
[62] 李强(Li Q), 张丽芬(Zhang L F), 柏良久(Bai L J), 缪洁(Miao J), 程振平(Cheng Z P), 朱秀林(Zhu X L). 化学进展(Progress in Chemistry), 2010, 22: 2079.
[63] 唐燕春(Tang Y C), 艾长军(Ai C J), 马敬红(Ma J H), 梁伯润(Liang B R). 合成技术与应用(Synthetic Technology and Application), 2007, 22: 38.
[64] He W, Jiang H, Zhang L, Cheng Z, Zhu X. Polym. Chem., 2013, 4: 2919.
[65] Huang X, Wirth M J. Anal. Chem., 1997, 69: 4577.
[66] Bombalski L, Dong H, Listak J, Matyjaszewski K, Bockstaller M R. Adv. Mater., 2007, 19: 4486.
[67] Tugulu S, Klok H A. Biomacromolecules, 2008, 9: 906.
[68] Tang W, Matyjaszewski K. Macromolecules, 2007, 40: 1858.
[69] Turgman-Cohen S, Genzer J. J. Am. Chem. Soc., 2011, 133: 17567.
[70] Turgman-Cohen S, Genzer J. Macromolecules, 2012, 45: 2128.
[71] Tsujii Y, Ohno K, Yamamoto S, Goto A, Fukuda T. Adv. Polym. Sci., 2006, 197: 1.
[72] Matyjaszewski K, Coca S, Gaynor S G, Wei M, Woodworth B E. Macromolecules, 1997, 30: 7348.
[73] Hui C M, Pietrasik J, Schmitt M, Mahoney C, Choi J, Bockstaller M R, Matyjaszewski K. Chem. Mater., 2014, 26: 745.
[74] Oh J K, Min K, Matyjaszewski K. Macromolecules, 2006, 39: 3161.
[75] Min K, Gao H, Matyjaszewski K. J. Am. Chem. Soc., 2005, 127: 3825
[76] Matyjaszewski K, Dong H, Jakubowski W, Pietrasik J, Kusumo A. Langmuir, 2007, 23: 4528.
[77] Payne K A, D'hooge D R, van Steenberge P H M, Reyniers M F, Cunningham M F, Hutchinson R A, Marin G B. Macromolecules, 2013, 46: 3828.
[78] Konkolewicz D, Magenau A J D, Averick S E, Simakova A, He H, Matyjaszewski K. Macromolecules, 2012, 45: 4461.
[79] Zhu G, Zhang L, Zhang Z, Zhu J, Tu Y, Cheng Z, Zhu X. Macromolecules, 2011, 44: 3233.
[80] Konkolewicz D, Wang Y, Krys P, Zhong M, Isse A A, Gennaro A, Matyjaszewski K. Polym. Chem., 2014, 5: 4396.
[81] Konkolewicz D, Wang Y, Zhong M, Krys P, Isse A A, Gennaro A, Matyjaszewski K. Macromolecules, 2013, 46: 8749.
[82] Magenau A J D, Strandwitz N C, Gennaro A, Matyjaszewski K. Science, 2011, 332: 81.
[83] Li B, Yu B, Huck W T S, Zhou F, Liu W. Angew. Chem. Int. Ed., 2012, 51: 5092.
[84] Li B, Yu B, Zhou F. Macromol. Rapid Commun., 2014, 35: 1287.
[85] Yan J, Li B, Zhou F, Liu W. ACS Macro Lett., 2013, 2: 592.
[86] Bortolamei N, Isse A A, Magenau A J D, Gennaro A, Matyjaszewski K. Angew. Chem. Int. Ed., 2011, 50: 11391.
[87] Magenau A J D, Bortolamei N, Frick E, Park S, Gennaro A, Matyjaszewski K. Macromolecules, 2013, 46: 4346.
[88] Li B, Yu B, Huck W T S, Liu W, Zhou F. J. Am. Chem. Soc., 2013, 135: 1708.
[89] Fang Z, Keinan S, Alibabaei L, Luo H, Ito A, Meyer T J. Angew. Chem. Int. Ed., 2014, 53: 4872.
[90] Hosseiny S, van Rijn P. Polymers, 2013, 5: 1229.
[91] Fors B P, Hawker C J. Angew. Chem. Int. Ed., 2012, 51: 8850.
[92] Dadashi-Silab S, Atilla T M, Mohamed A A, Bahadar K S, Yagci Y. Macromol. Rapid Commun., 2014, 35: 454.
[93] Alfredo N V, Jalapa N E, Morales S L, Ryabov A D, Le Lagadec R, Alexandrova L. Macromolecules, 2012, 45: 8135.
[94] Ciftci M, Tasdelen M A, Li W, Matyjaszewski K, Yagci Y. Macromolecules, 2013, 46: 9537.
[95] Ciftci M, Tasdelen M A, Yagci Y. Polym. Chem., 2014, 5: 600.
[96] Anastasaki A, Nikolaou V, Zhang Q, Burns J, Samanta S R, Waldron C, Haddleton A J, McHale R, Fox D, Percec V, Wilson P, Haddleton D M. J. Am. Chem. Soc., 2014, 136: 1141.
[97] Konkolewicz D, Schröder K, Buback J, Bernhard S, Matyjaszewski K. ACS Macro Lett., 2012, 1: 1219.
[98] Dadashi-Silab S, Tasdelen M A, Kiskan B, Wang X, Antonietti M, Yagci Y. Macromol. Chem. Phys., 2014, 215: 675.
[99] Poelma J E, Fors B P, Meyers G F, Kramer J W, Hawker C J. Angew. Chem. Int. Ed., 2013, 125: 6982
[100] Fors B P, Poelma J E, Menyo M S, Robb M J, Spokoyny D M, Kramer J W, Waite J H, Hawker C J. J. Am. Chem. Soc., 2013, 135: 14106.
[101] Yan J, Li B, Yu B, Huck W T S, Liu W, Zhou F. Angew. Chem. Int. Ed., 2013, 52: 9125.
[102] De la Fuente J L, Fernandez-Sanz M, Fernandez-Garcia M, Madruga E L. Macromol. Chem. Phys., 2001, 202: 2565.
[103] Feng W, Chen R, Brash J L, Zhu S. Macromol. Rapid Commun., 2005, 26: 1383.
[104] Chambard G, Klumperman B, German A L. Macromolecules, 2000, 33: 4417.
[105] Bergenudd H, Coullerez G, Jonsson M, Malmstrom E. Macromolecules, 2009, 42: 3302.
[106] París R, de la Fuente J L. J. Polym. Sci. Part A: Polym. Chem., 2005, 43: 6247.
[107] Nanda A K, Matyjaszewski K. Macromolecules, 2003, 36: 599.
[108] Simakova A, Mackenzie M, Averick S E, Park S, Matyjaszewski K. Angew. Chem. Int. Ed., 2013, 52: 12148.
[109] Depp V, Alikhani A, Grammer V, Lele B S. Acta Biomater., 2009, 5: 560.
[110] Silva T B, Spulber M, Kocik M K, Seidi F, Charan H, Rother M, Sigg S J, Renggli K, Kali G, Bruns N. Biomacromolecules, 2013, 14: 2703.
[111] Zhang Q, Wilson P, Li Z, McHale R, Godfrey J, Anastasaki A, Waldron C, Haddleton D M. J. Am. Chem. Soc., 2013, 135: 7355.
[112] Wong E H H, Guntari S N, Blencowe A, van Koeverden M P, Caruso F, Qiao G G. ACS Macro Lett., 2012, 1: 1020.
[113] Hou C, Qu R, Ji C, Wang C, Sun C. J. Appl. Polym. Sci., 2006, 101: 1598.
[114] Buruiana E C, Murariu M, Buruiana T. J. Lumin., 2010, 130: 1794.
[115] Zhang H, Schubert U S. Macromol. Rapid. Commun., 2004, 25: 1225.
[116] Abreu C M R, Mendonça P V, Serra A C, Popov A V, Matyjaszewski K, Guliashvili T, Coelho J F J. ACS Macro Lett., 2012, 1: 1308.
[117] Mendes J P, Branco F, Abreu C M R, Mendonça P V, Popov A V, Guliashvili T, Serra A C, Coelho J F J. ACS Macro Lett., 2014, 3: 544.
[118] Mazurowski M, Gallei M, Rehahn M. ACS Macro Lett., 2012, 1: 1362.
[119] Li B, Yu B, Zhou F. Macromol. Rapid Commun., 2013, 34: 246.
[120] Marutani E, Yamamoto S, Ninjbadgar T, Tsujii Y, Fukuda T, Takano M. Polymer, 2004, 45: 2231.
[121] Kim J B, Huang W, Miller M D, Baker G L, Bruening M L. J. Polym. Sci. Part A: Polym. Chem., 2003, 41: 386.
[122] Sanjuan S, Tran Y. Macromolecules, 2008, 41: 8721
[123] Biesalski M, Rühe J. Macromolecules, 2002, 35: 499
[124] Ivkov R, Butler P D, Satija S K, Fetters L J. Langmuir, 2001, 17: 2999.
[125] Sanyal M K, Sinha S K, Gibaud A, Huang K G, Carvalho B L, Rafailovich M, Sokolov J, Zhao X, Zhao W. Europhys. Lett., 1993, 21: 691.
[126] Karim A, Satija S, Douglas J, Ankner J, Fetters L. Phys. Rev. Lett., 1994, 73: 3407.
[127] Harris B P, Metters A T. Macromolecules, 2006, 39: 2764.
[128] Jordan R, Ulman A, Kang J F, Rafailovich M H, Sokolov J. J. Am. Chem. Soc., 1999, 121: 1016.
[129] Bartholome C, Beyou E, Bourgeat-Lami E, Chaumont P, Lefebvre F, Zydowicz N. Macromolecules, 2005, 38: 1099.
[130] Zhou F, Hu H, Yu B, Osborne V L, Huck W T S, Liu W. Anal. Chem., 2007, 79: 176.
[131] Cortez M L, Pallarola D, Ceolín M, Azzaroni O, Battaglini F. Anal. Chem., 2013, 85: 2414.
[132] Alonso-García T, Rodríguez-Presa M J, Gervasi C, Moya S, Azzaroni O. Anal. Chem., 2013, 85: 6561.
[133] García T A, Gervasi C A, Rodríguez P M J, Otamendi J I, Moya S E, Azzaroni O. J. Phys. Chem. C, 2012, 116: 13944.
[134] Choi E Y, Azzaroni O, Cheng N, Zhou F, Kelby T, Huck W T S. Langmuir, 2007, 23: 10389.
[135] Spruijt E, Choi E Y, Huck W T S. Langmuir, 2008, 24: 11253.
[136] Wang X, Cai X, Guo Q, Zhang T, Kobe B, Yang J. Chem. Commun., 2013, 49: 10064.
[137] Wang X, Guo Q, Cai X, Zhou S, Kobe B, Yang J. ACS Appl. Mater. Interfaces, 2014, 6: 2583.

[1] He Fuxi, Tang Gang, Min Xiaoyan, Hu Minqi, Shao Lidong, Bi Yunmei. Living/Controlled Free Radical Polymerization of N-Vinyl Caprolactam [J]. Progress in Chemistry, 2016, 28(2/3): 328-336.
[2] Mu Siyang, Guo Jing, Yu Chunfang, Gong Yumei, Zhang Sen. Synthesis and Applications of ATRP Macromolecular Initiator [J]. Progress in Chemistry, 2015, 27(5): 539-549.
[3] Zhou Lilin Kuang Jinming Yuan Jinying. Preparation of Magnetic Hybrid Nanoparticles via Surface-Initiated Polymerization from Magnetite [J]. Progress in Chemistry, 2009, 21(09): 1880-1887.
[4] Ni Gang,Yang Wu**,He Xiaoyan,Bo Lili,Lu Weilian. Advances in Surface Initiated Polymerization [J]. Progress in Chemistry, 2005, 17(06): 1074-1080.
[5] Tang Xinde1,2,Fan Xinghe1**,Chen Xiaofang1,Zhou Qifeng1**. Progress of Atom Transfer Radical Polymerization ( ATRP) Applied to the Synthesis of Star Polymers [J]. Progress in Chemistry, 2005, 17(06): 1089-1095.
[6] Zhou Feng,Liu Weimin. Surface-initiated Polymerization on Inorganic Substrates and Its Use to the Fabrication of End-grafted Polymer Films [J]. Progress in Chemistry, 2002, 14(02): 141-.