中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (1): 1-10 DOI: 10.7536/PC140737 Previous Articles   Next Articles

Special Issue: 电化学有机合成

• Review •

Electrochemical Analysis of Tumor Marker Proteins

Cao Ya1, Zhu Xiaoli1, Zhao Jing1, Li Hao2, Li Genxi*1,2   

  1. 1. Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, China;
    2. State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing 210093, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Science Foundation for Distinguished Young Scholars of China (No. 20925520).

PDF ( 1705 ) Cited
Export

EndNote

Ris

BibTeX

With the development of monoclonal antibody and immunological detection technology, the detection of tumor marker proteins becomes the most important method for early screening and diagnosis of cancer. On the other hand, with the development of molecular recognition and surface assembly techniques, electrochemical analysis displays some unique advantages in biological analysis, such as simple operation, easy-to-miniaturize nature, low cost, sensitivity, and so on. Especially in recent years, various antibodies, aptamers and peptides that can specifically bind with tumor marker proteins have been screened out. Various nanomaterials and nanotechnologies have been explored in the application to electrochemical analysis. Many novel techniques for molecule labeling, surface self-assembly, and signal amplification have been proposed. So, electrochemical analysis obtains unprecedented opportunities in the quantitative detection of tumor marker proteins, and more and more achievements are reported. In this review, by commenting on some typical work conducted in the lab of the authors, we summarize the recent research progress on the electrochemical analysis of tumor marker proteins and make an outlook on the trends of the related research fields in the future.

Contents
1 Introduction
2 Electrochemical immunoassay based on antibody
3 Electrochemical analysis based on aptamer
4 Electrochemical analysis based on polypeptide
5 Electrochemical analysis based on other recognition elements
6 Conclusion and outlook

CLC Number: 

[1] Lacroix M. Endocrine-Related Cancer, 2006, 13: 1033.
[2] Fisher B, Jeong J H, Anderson S, Bryant J, Fisher E R, Wolmark N. N. Engl. J. Med., 2002, 347: 567.
[3] Berois N, Varangot M, Aizen B, Estrugo R, Zarantonelli L, Fernández P, Krygier G, Simonet F, Barrios E, Musé I, Osinaga E. Eur. J. Cancer, 2000, 36: 717.
[4] Tothill I E. Semin. Cell Dev. Biol., 2009, 20: 55.
[5] Molina R, Gion M. Breast, 1998, 7: 187.
[6] Koepke J A. Cancer, 1992, 69: 1578.
[7] Du D, Zou Z X, Shin Y, Wang J, Wu H, Engelhard M H, Liu J, Aksay I A, Lin Y H. Anal. Chem., 2010, 82: 2989.
[8] Wilson M S. Anal. Chem., 2005, 77: 1496.
[9] Chikkaveeraiah B V, Bhirde A A, Morgan N Y, Eden H S, Chen X. ACS Nano, 2012, 6: 6546.
[10] Luo X L, Davis J J. Chem. Soc. Rev., 2013, 42: 5944.
[11] Derkus B, Emregul E, Yucesan C, Emregul K C. Biosens. Bioelectron., 2013, 46: 53.
[12] Chen D H, Shen M, Cao Y, Bo B, Chen Z, Shu Y Q, Li G X. Electrochem. Commun., 2013, 27: 38.
[13] Chen H X, Mei Q H, Jia S S, Koh K, Wang K M, Liu X J. Analyst, 2014, 139: 4476.
[14] Luo X L, Xu Q, James T, Davis J J. Anal. Chem., 2014, 86: 5553.
[15] Vasudev A, Kaushik A, Bhansali S. Biosens. Bioelectron., 2013, 39: 300.
[16] Ozdemir M S, Marczak M, Bohets H, Bonroy K, Roymans D, Stuyver L, Vanhoutte K, Pawlak M, Bakker E. Anal. Chem., 2013, 85: 4770.
[17] Prabhulkar S, Alwarappan S, Liu G D, Li C Z. Biosens. Bioelectron., 2009, 24: 3524.
[18] Akter R, Rhee C K, Rahman M A. Biosens. Bioelectron., 2013, 50: 118.
[19] Zheng D Y, Zhu X J, Ding X R, Zhu X L, Yin Y M, Li G X. Talanta, 2013, 105: 187.
[20] Munge B S, Coffey A L, Doucette J M, Somba B K, Malhotra R, Patel V, Gutkind J S, Rusling J F. Angew. Chem. Int. Ed., 2011, 50: 7915.
[21] Akter R, Rahman M A, Rhee C K. Anal. Chem., 2012, 84: 6407.
[22] Wu X F, Xue P, Kang Y J, Hui K M. Anal. Chem., 2013, 85: 8661.
[23] Yang G H, Li L L, Rana R K, Zhu J J. Carbon, 2013, 61: 357.
[24] Hou L, Gao Z Q, Xu M D, Cao X, Wu X P, Chen G N, Tang D P. Biosens. Bioelectron., 2013, 54: 365.
[25] Yu Y, Gao T, Li H, Ye Z H, Chen Z, Li G X. Electrochem. Commun., 2014, 42: 6.
[26] Dirks R M, Pierce N A. Proc. Natl. Acad. Sci. U.S.A., 2004, 101: 15275.
[27] Ge Y Q, Wu J, Ju H X, Wu S. Talanta, 2014, 120: 218.
[28] Zhang H, Li F, Dever B, Wang C, Li X F, Le X C. Angew. Chem. Int. Ed., 2013, 52: 10698.
[29] Ren K W, Wu J, Yan F, Ju H X. Sci. Rep., 2014, 4: 4360.
[30] Tang D P, Hou L, Niessner R, Xu M D, Gao Z Q, Knopp D. Biosens. Bioelectron., 2013, 46: 37.
[31] Lai G S, Wu J, Ju H X, Yan F. Adv. Funct. Mater., 2011, 21: 2938.
[32] Wang J, Li G X. Curr. Med. Chem., 2011, 18: 4107.
[33] Huang C C, Huang Y F, Cao Z, Tan W, Chang H T. Anal. Chem., 2005, 77: 5735.
[34] Sosic A, Meneghello A, Antognoli A, Cretaio E, Gatto B. Sensors, 2013, 13: 13425.
[35] Wang J, Meng W Y, Zheng X F, Liu S L, Li G X. Biosens. Bioelectron., 2009, 24: 1598.
[36] Li C, Wang Z Y, Gao T, Duan A P, Li G X. Chem. Commun., 2013, 49: 3760.
[37] Zheng T T, Zhang Q F, Feng S, Zhu J J, Wang Q, Wang H. J. Am. Chem. Soc., 2014, 136: 2288.
[38] Zhu X L, Yang J H, Liu M, Wu Y, Shen Z M, Li G X. Anal. Chim. Acta, 2013, 764: 59.
[39] Li T, Fan Q, Liu T, Zhu X L, Zhao J, Li G X. Biosens. Bioelectron., 2010, 25: 2686.
[40] Zhu X L, Feng C, Ye Z H, Chen Y Y, Li G X. Sci. Rep., 2014, 4: 4169.
[41] Yi Z, Li X Y, Gao Q, Tang L J, Chu X. Analyst, 2013, 138: 2032.
[42] Li D, Song S P, Fan C H. Acc. Chem. Res., 2010, 43: 631.
[43] Lai R Y, Plaxco K W, Heeger A J. Anal. Chem., 2007, 79: 229.
[44] Thomas J M, Chakraborty B, Sen D, Yu H Z. J. Am. Chem. Soc., 2012, 134: 13823.
[45] Liu Y, Zhou Q, Revzin A. Analyst, 2013, 138: 4321.
[46] Ma F, Ho C, Cheng A K H, Yu H Z. Electrochim. Acta, 2013, 110: 139.
[47] Liu Y, Tuleouva N, Ramanculov E, Revzin A. Anal. Chem., 2010, 82: 8131.
[48] Chen Y, Pui T S, Kongsuphol P, Tang K C, Arya S K. Biosens. Bioelectron., 2014, 53: 257.
[49] Cao Y, Chen D H, Chen W W, Yu J C, Chen Z, Li G X. Anal. Chim. Acta, 2014, 812: 45.
[50] Zhao J, He X L, Bo B, Liu X J, Yin Y M, Li G X. Biosens. Bioelectron., 2012, 34: 249.
[51] Cheng W, Ding S J, Li Q, Yu T X, Yin Y B, Ju H X, Ren G S. Biosens. Bioelectron., 2012, 36: 12.
[52] Fan Q, Zhao J, Li H, Zhu L, Li G X. Biosens. Bioelectron., 2012, 33: 211.
[53] Lu J, Paulsen J T, Jin D Y. Anal. Chem., 2013, 85: 8240.
[54] Miao P, Ning L M, Li X X, Shu Y Q, Li G X. Biosens. Bioelectron., 2011, 27: 178.
[55] Zhao J, Hu S S, Zhong W D, Wu J G, Shen Z M, Chen Z, Li G X. ACS Appl. Mater. Interfaces, 2014, 6: 7070.
[56] Hu R, Wen W, Wang Q L, Xiong H Y, Zhang X H, Gu H S, Wang S F. Biosens. Bioelectron., 2014, 53: 384.
[57] Miodek A, Castillo G, Hianik T, Korri-Youssoufi H. Anal. Chem., 2013, 85: 7704.
[58] Lu C H, Yang H H, Zhu C L, Chen X, Chen G N. Angew. Chem. Int. Ed., 2009, 48: 4785.
[59] Zhao J, Chen G F, Zhu L, Li G X. Electrochem. Commun., 2011, 13: 31.
[60] Bai L J, Yuan R, Chai Y Q, Zhuo Y, Yuan Y L, Wang Y. Biomaterials., 2012, 33: 1090.
[61] Song W, Li H, Liang H, Qiang W B, Xu D K. Anal. Chem., 2014, 86: 2775.
[62] Mascini M, Palchetti I, Tombelli S. Angew. Chem. Int. Ed., 2012, 51: 1316.
[63] Pavan S, Berti F. Anal. Bioanal. Chem., 2012, 402: 3055.
[64] Feng L Y, Wu L, Wang J S, Ren J S, Miyoshi D, Sugimoto N, Qu X G. Adv. Mater., 2012, 24: 125.
[65] Wang X, Piro B, Reisberg S, Anquetin G, de Rocquigny H, Jiang P, Wang Q, Wu W, Pham M C, Dong C Z. Biosens. Bioelectron., 2014, 61: 57.
[66] Kafi M A, Kim T H, An J H, Choi J W. Anal. Chem., 2011, 83: 2104.
[67] Li H, Xie H N, Cao Y, Ding X R, Yin Y M, Li G X. Anal. Chem., 2013, 85: 1047.
[68] Li H, Xie H N, Huang Y, Bo B, Zhu X L, Shu Y Q, Li G X. Chem. Commun., 2013, 49: 9848.
[69] Li H, Xie H N, Yang N N, Huang Y, Sun L Z, Li G X. Chem. Commun., 2013, 49: 5387.
[70] Wang X Y, Li H, Li X X, Chen Y Y, Yin Y M, Li G X. Electrochem. Commun., 2014, 39: 12.
[71] Xie H N, Li H, Huang Y, Wang X Y, Yin Y M, Li G X. ACS Appl. Mater. Interfaces, 2014, 6: 459.
[72] Huang Y, Li H, Gao T, Liu X J, Li G X. Analyst, 2014, 139: 3744.
[73] Cash K J, Ricci F, Plaxco K W. J. Am. Chem. Soc., 2009, 131: 6955.
[74] Fei Y H, Liu D, Wu Z S, Shen G L, Yu R Q. Bioconjug. Chem., 2011, 22: 2369.
[75] Vallée-Bélisle A, Ricci F, Uzawa T, Xia F, Plaxco K W. J. Am. Chem. Soc., 2012, 134: 15197.
[76] Wu Z, Zhen Z, Jiang J H, Shen G L, Yu R Q. J. Am. Chem. Soc., 2009, 131: 12325.
[77] Cao Y, Zhu S, Yu J C, Zhu X J, Yin Y M, Li G X. Anal. Chem., 2012, 84: 4314.
[78] Wang G F, He X P, Wang L, Zhang X J. Biosens. Bioelectron., 2013, 42: 337.
[79] Wang Q, Jiang B Y, Xu J, Xie J Q, Xiang Y, Yuan R, Chai Y Q. Biosens. Bioelectron., 2013, 43: 19.
[80] Zhao J, Zhu L, Guo C, Gao T, Zhu X L, Li G X. Biosens. Bioelectron., 2013, 49: 329.
[81] Gorodetsky A A, Ebrahim A, Barton J K. J. Am. Chem. Soc., 2008, 130: 2924.
[82] Pan Q, Zhang R Y, Bai Y F, He N Y, Lu Z H. Anal. Biochem., 2008, 375: 179.
[83] Shen M, Yang M, Li H, Liang Z Q, Li G X. Electrochim. Acta, 2012, 60: 309.
[84] Zhu S, Cao Y, Xu Y Y, Yin Y M, Li G X. Int. J. Mol. Sci., 2013, 14: 10298.
[85] Ye Z H, Zhang B, Yang Y C, Wang Z X, Zhu X L, Li G X. Microchim. Acta, 2014, 181: 139.
[86] Yin T T, Li H, Yang N N, Gao T, Sun L Z, Li G X. Biosens. Bioelectron., 2014, 56: 1.
[87] Macus R A, Sutin N. Biochim. Biophys. Acta, 1985, 811: 265.
[88] Li G, Miao P. Electrochemical Analysis of Proteins and Cells. Berlin: Springer, 2012.

[1] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[2] Yanyan Wang, Limin Chen, Siyang Li, Luhua Lai. How Intrinsically Disordered Proteins Modulate Biomolecular Condensates [J]. Progress in Chemistry, 2022, 34(7): 1610-1618.
[3] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[4] Weijia Zhang, Xueguang Shao, Wensheng Cai. Molecular Simulation of the Antifreeze Mechanism of Antifreeze Proteins [J]. Progress in Chemistry, 2021, 33(10): 1797-1811.
[5] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[6] Yue Li, Jinghong Li. CRISPR Bioanalytical Chemistry Technology [J]. Progress in Chemistry, 2020, 32(1): 5-13.
[7] Bin Qiao, Hongfei Chen, Hui Zhang, Chenxin Cai. Analysis and Detection of Tumor Exosomes [J]. Progress in Chemistry, 2019, 31(6): 847-857.
[8] Yangyang Zhou, Jian Zhong, Xiaojun Bian, Gang Liu, Liang Li, Juan Yan. Application of Signal Amplification Technology in the Area of Food Safety Detection [J]. Progress in Chemistry, 2018, 30(2/3): 206-224.
[9] Deng Wangping, Wang Lihua, Song Shiping, Zuo Xiaolei. Biosensors in POCT Application [J]. Progress in Chemistry, 2016, 28(9): 1341-1350.
[10] Ding Peng, Chen Xian, Li Xiuling, Qing Guangyan, Sun Taolei, Liang Xinmiao. The Separation and Enrichment of Glycoproteins or Glycopeptides Based on Nanoparticles [J]. Progress in Chemistry, 2015, 27(11): 1628-1639.
[11] Gui Zhen, Yan Feng, Li Jinchang, Ge Mengyuan, Ju Huangxian. Applications of Locked Nucleic Acid Molecular Beacons in Molecular Recognition and Bioanalysis [J]. Progress in Chemistry, 2015, 27(10): 1448-1458.
[12] Lin Yingwu. Dimerization, Oligomerization and Polymerization of Heme Proteins [J]. Progress in Chemistry, 2014, 26(06): 987-995.
[13] Zhong Dagen, Liu Zonghua, Zuo Qinhua, Xue Wei. Interaction of Polymeric Nanomaterials with Plasma Proteins [J]. Progress in Chemistry, 2014, 26(04): 638-646.
[14] Chen Xuwei, Mao Quanxing, Wang Jianhua*. Ionic Liquids in Extraction/Separation of Proteins [J]. Progress in Chemistry, 2013, 25(05): 661-668.
[15] Song Yingpan, Feng Miao, Zhan Hongbing*. Application of Graphene Edge Effect in Electrochemical Biosensors [J]. Progress in Chemistry, 2013, 25(05): 698-706.