中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (12): 1962-1976 DOI: 10.7536/PC140736 Previous Articles   Next Articles

• Review •

Application of Conducting Polymers in Controlled Drug Delivery System

Su Dan1, Di Feng1, Xing Ji1, Che Jianfei*1, Xiao Yinghong*2   

  1. 1. Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210097, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the Ph.D. programs foundation of Ministry of Education of China (No. 20123219110010) and the Natural Science Foundation of Jiangsu Province(No. BK2012845)

PDF ( 2779 ) Cited
Export

EndNote

Ris

BibTeX

Conducting polymers (CPs) are conjugated polymers with interesting chemical and physical properties. CP-based drug delivery systems (DDSs) have been developed rapidly in the past few decades. The advantages of CPs as potential candidates for application in DDSs are derived from their inherent electroactivity, ease of preparation and applicability to a wide spectrum of dopants, including anionic, cationic and neutral biomolecules. More importantly, due to the switching property of the redox states external electrical stimulations can be used to alter the electronegativity, conductivity, doping level and volume of CPs. Moreover, the structure and surface morphology of CPs can be tailored by incorporating different dopants or carbon nanotubes (CNTs) as well as by different preparation methods. Capitalizing the unique properties, CP-based DDSs can provide high drug load, trigger release of the incorporated drugs, control drug release and modify the release rate of the drugs. In this review, we briefly introduce the properties and preparation methods of CPs, and summarize the research progress of drug loading and release of CP-based DDSs. Finally, potential problems, challenges and future development in this area are proposed and discussed.

Contents
1 Introduction
2 The properties and preparation of conducting polymers
3 Drug incorporation and release of conducting polymer-based drug delivery system
3.1 Drug incorporation
3.2 Drug release
4 The modification of conducting polymer-based drug delivery system
4.1 Nano modification
4.2 Conducting hydrogel
4.3 Biotin-doped modification
4.4 Bilayer system
4.5 Self-powered system
4.6 Fluorescence imaging system
5 Challenges and future directions

CLC Number: 

[1] LaVan D A, McGuire T, Langer R. Nature Biotechnology, 2003, 21: 1184.
[2] Allen T M, Cullis P R. Science, 2004, 303: 1818.
[3] Langer R. Science, 1990, 249: 1527.
[4] 张悦(Zhang Y), 于奡(Yu A), 王永健(Wang Y J). 化学进展(Progress in Chemistry), 2008, 20: 740.
[5] Gombotz W R, Pettit D K. Bioconjugate Chemistry, 1995, 6: 332.
[6] Folkman J, Long D M, Rosenbau R. Science, 1966, 154: 148.
[7] Folkman J, Long D M. Journal of Surgical Research, 1964, 4: 139.
[8] Zaffaroni A. US 3797494, 1974.
[9] Peppas N A, Colombo P. Journal of Controlled Release, 1997, 45: 35.
[10] Duncan R. Nature Reviews Drug Discovery, 2003, 2: 347.
[11] Nishiyama N, Kataoka K. Pharmacology & Therapeutics, 2006, 112: 630.
[12] Allen T M. Nature Reviews Cancer, 2002, 2: 750.
[13] Langer R. Nature, 1998, 392: 5.
[14] Uhrich K E, Cannizzaro S M, Langer R S, Shakesheff K M. Chemical Reviews, 1999, 99: 3181.
[15] Freiberg S, Zhu X X. International Journal of Pharmaceutics, 2004, 282: 1.
[16] Kumar M. J. Pharm. Pharm. Sci, 2000, 3: 234.
[17] Peng H, Soeller C, Travas-Sejdic J. Macromolecules, 2007, 40: 909.
[18] Spires J B, Peng H, Williams D E, Wright B E, Soeller C, Travas-Sejdic J. Biosensors and Bioelectronics, 2008, 24: 928.
[19] Kumari A, Yadav S K, Yadav S C. Colloids and Surfaces B: Biointerfaces, 2010, 75: 1.
[20] Barenholz Y C. Journal of Controlled Release, 2012, 160(2): 117.
[21] Lee L Y, Tong C Y W, Wong T, Wilkinson M. International Journal of Clinical Practice, 2012, 66: 342.
[22] Hoare T, Santamaria J, Goya G F, Irusta S, Lin D, Lau S, Padera R, Langer R, Kohane D S. Nano Letters, 2009, 9: 3651.
[23] Cai K, Luo Z, Hu Y, Chen X Y, Liao Y J, Yang L, Deng L H. Advanced Materials, 2009, 21: 4045.
[24] Kloxin A M, Kasko A M, Salinas C N, Anseth K S. Science, 2009, 324: 59.
[25] Kwon I C, Bae Y H, Kim S W. Nature, 1991, 354: 291.
[26] Santini J T, Cima M J, Langer R. Nature, 1999, 397: 335.
[27] Wood K C, Zacharia N S, Schmidt D J, Wrightman S T, Andaya B J, Hammond P T. Proceedings of the National Academy of Sciences, 2008, 105: 2280.
[28] Timko B P, Dvir T, Kohane D S. Advanced Materials, 2010, 22: 4925.
[29] Prescott J H, Lipka S, Baldwin S, Sheppard N F, Maloney J M, Coppeta J, Yomtov B, Staples M A, Santini T. Nature Biotechnology, 2006, 24: 437.
[30] Baughman R H. Synthetic Metals, 1996, 78(3): 339.
[31] 张景云(Zhang J Y). 化学进展(Progress in Chemistry), 1989(0): 009.
[32] Inzelt G. Conducting Polymers. Springer Berlin Heidelberg, 2012: 149.
[33] Svirskis D, Travas-Sejdic J, Rodgers A, Garg S. Journal of Controlled Release, 2010, 146: 6.
[34] Guo B, Glavas L, Albertsson A C. Progress in Polymer Science, 2013, 38(9): 1263.
[35] Wu C, Bull B, Szymanski C, Christensen K, McNeill J. ACS Nano, 2008, 2(11): 2415.
[36] Xing C, Yang G, Liu L, Yang Q, Lv F, Wang S. Small, 2012, 8(4): 525.
[37] Richardson R T, Wise A K, Thompson B C, Flynn B O, Atkinson P J, Fretwell N J, Fallon J B, Wallace G G, Shepherd R K, Clark G M, O'Leary S J. Biomaterials, 2009, 30: 2614.
[38] Leprince L, Dogimont A, Magnin D, Demoustier-Champagne S. Journal of Materials Science: Materials in Medicine, 2010, 21: 925.
[39] Svirskis D, Wright B E, Travas-Sejdic J, Rodgers S, Garg S. Electroanalysis, 2010, 22: 439.
[40] Kim H K, Chung H J, Park T G. Journal of Controlled Release, 2006, 112: 167.
[41] Csaba N, Sanchez A, Alonso M J. Journal of Controlled Release, 2006, 113: 164.
[42] Wang C, Whitten P G, Too C O, Wallace G G. Sensors and Actuators B: Chemical, 2008, 129(2): 605.
[43] Diaz A F, Bargon J. Handbook of Conducting Polymers, 1986, 1: 81.
[44] Skotheim T A. Handbook of Conducting Polymers. Marcel Dekker, 1986.
[45] Wadhwa R, Lagenaur C F, Cui X T. Journal of Controlled Release, 2006, 110: 531.
[46] Miller L L, Zinger B, Zhou Q X. Journal of the American Chemical Society, 1987, 109: 2267.
[47] Miller L L. Molecular Crystals and Liquid Crystals, 1988, 160: 297.
[48] Miller L L, Zhou X Q. Macromolecules, 1987, 20: 1594.
[49] Prezyna L A, Qiu Y J, Reynolds J R, Wnek G E. Macromolecules, 1991, 24: 5283.
[50] Svirskis D, Travas-Sejdic J, Rodgers A, Garg S. New Zealand: AIP Conference Proceedings. 2009, 1151: 36.
[51] Hepel M, Mahdavi F. Microchemical Journal, 1997, 56: 54.
[52] Svirskis D, Sharma M, Yu Y, Garg S. Therapeutic Delivery, 2013, 4: 307.
[53] Kim D H, Richardson-Burns S M, Hendricks J L, Sequera C, Martin D C. Advanced Functional Materials, 2007, 17: 79.
[54] Kontturi K, Pentti P, Sundholm G. Journal of Electroanalytical Chemistry, 1998, 453: 231.
[55] Abidian M R, Kim D H, Martin D C. Advanced Materials, 2006, 18: 405.
[56] Thompson B C, Moulton S E, Ding J, Richardson R, Cameron A, O'Leary S, Wallace G G, Clark G M. Journal of Controlled Release, 2006, 116: 285.
[57] Zinger B, Miller L L. Journal of the American Chemical Society, 1984, 106: 6861.
[58] Pyo M, Maeder G, Kennedy R T, Reynolds J R. Journal of Electroanalytical Chemistry, 1994, 368: 329.
[59] Xiao Y, Ye X, He L, Che J F. Polymer International, 2012, 61: 190.
[60] Bidan G, Lopez C, Mendes-Viegas F, Vieil E. Biosensors and Bioelectronics, 1995, 10: 219.
[61] Han G, Shi G. Sensors and Actuators B: Chemical, 2004, 99: 525.
[62] Alici G, Devaud V, Renaud P, Spinks G. Journal of Micromechanics and Microengineering, 2009, 19(2): 025017.
[63] Jeon G, Yang S Y, Byun J, Kim J K. Nano letters, 2011, 11: 1284.
[64] Gao W, Li J, Cirillo J, Borgens R B, Cho Y. Langmuir, 2014, 30(26): 7778.
[65] Ru X, Shi W, Huang X, Cui X, Ren B, Ge D. Electrochimica Acta, 2011, 56(27): 9887.
[66] Luo X, Cui X T. Electrochemistry Communications, 2009, 11(2): 402.
[67] Kang G, Borgens R B, Cho Y. Langmuir, 2011, 27(10): 6179.
[68] Han J, Wang L, Guo R. Macromolecular Rapid Communications, 2011, 32(9/10): 729.
[69] Luo X, Matranga C, Tan S, Alba N, Cui X Y. Biomaterials, 2011, 32: 6316.
[70] 徐秀娟(Xu X J), 秦金贵(Li J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21(12): 2559.
[71] Liu H W, Hu S H, Chen Y W, Chen S Y. Journal of Materials Chemistry, 2012, 22(33): 17311.
[72] Weaver C L, LaRosa J M, Luo X, Cui X T. ACS Nano, 2014, 8(2): 1834.
[73] Guiseppi-Elie A. Biomaterials, 2010, 31: 2701.
[74] Lira L M, Córdoba de Torresi S I. Electrochemistry Communications, 2005, 7: 717.
[75] Chikar J A, Hendricks J L, Richardson-Burns S M, Raphael Y, Pfingst B E, Martin D C. Biomaterials, 2012, 33: 1982.
[76] George P M, LaVan D A, Burdick J A, Chen C Y, Liang E, Langer R. Advanced Materials, 2006, 18: 577.
[77] Pyo M, Reynolds J R. J. Chem. Soc., Chem. Commun., 1993,(3): 258.
[78] Demoustier-Champagne S, Reynolds J R, Pomerantz M. Chemistry of Materials, 1995, 7(2): 277.
[79] Pyo M, Reynolds J R. Chemistry of Materials, 1996, 8(1): 128.
[80] Massoumi B, Entezami A. Journal of Bioactive and Compatible Polymers, 2002, 17: 51.
[81] Massoumi B, Entezami A. European Polymer Journal, 2001, 37: 1015.
[82] EdwardáMoulton S, DavidáImisides M, LeonardáShepherd R, GeorgeáWallace G. Journal of Materials Chemistry, 2008, 18(30): 3608.
[83] Ge D, Ru X, Hong S, Jiang S, Tu J, Wang J, Zhang A, Ji S, Linkov V, Ren B, Shi, W. Electrochemistry Communications, 2010, 12(10): 1367.
[84] Ge D, Qi R, Mu J, Ru X, Hong S, Ji S, Linkov V, Shi W. Electrochemistry Communications, 2010, 12(8): 1087.
[85] Yang G, Lv F, Wang B, Liu L, Yang Q, Wang S. Macromolecular Bioscience, 2012, 12(12): 1600.
[86] Tang H, Duan X, Feng X, Liu L, Wang S, Li Y, Zhu D. Chem. Commun., 2009(6): 641.
[87] Feng X, Lv F, Liu L, Tang H, Xing C, Yang Q, Wang S. ACS Applied Materials & Interfaces, 2010, 2(8): 2429.
[88] Green R A, Lovell N H, Poole-Warren L A. Acta Biomaterialia, 2010, 6: 63.
[89] Uang Y M, Chou T C. Electroanalysis, 2002, 14: 1564.9, 21(12): 2559.
[71] Liu H W, Hu S H, Chen Y W, Chen S Y. Journal of Materials Chemistry, 2012, 22(33): 17311.
[72] Weaver C L, LaRosa J M, Luo X, Cui X T. ACS nano, 2014, 8(2): 1834.
[73] Guiseppi-Elie A. Biomaterials, 2010, 31: 2701.
[74] Lira L M, Córdoba de Torresi S I. Electrochemistry communications, 2005, 7: 717.
[75] Chikar J A, Hendricks J L, Richardson-Burns S M, Raphael Y, Pfingst B E, Martin D C. Biomaterials, 2012, 33: 1982.
[76] George P M, LaVan D A, Burdick J A, Chen C Y, Liang E, Langer R. Advanced Materials, 2006, 18: 577.
[77] Pyo M, Reynolds J R. J. Chem. Soc., Chem. Commun., 1993(3): 258.
[78] Demoustier-Champagne S, Reynolds J R, Pomerantz M. Chemistry of materials, 1995, 7(2): 277.
[79] Pyo M, Reynolds J R. Chemistry of materials, 1996, 8(1): 128.
[80] Massoumi B, Entezami A. Journal of bioactive and compatible polymers, 2002, 17: 51.
[81] Massoumi B, Entezami A. European polymer journal, 2001, 37: 1015.
[82] EdwardáMoulton S, DavidáImisides M, LeonardáShepherd R, GeorgeáWallace G. Journal of Materials Chemistry, 2008, 18(30): 3608.
[83] Ge D, Ru X, Hong S, Jiang S, Tu J, Wang J, Zhang A, Ji S, Linkov V, Ren B, Shi, W. Electrochemistry Communications, 2010, 12(10): 1367.
[84] Ge D, Qi R, Mu J, Ru X, Hong S, Ji S, Linkov V, Shi W. Electrochemistry Communications, 2010, 12(8): 1087.
[85] Yang G, Lv F, Wang B, Liu L, Yang Q, Wang S. Macromolecular bioscience, 2012, 12(12): 1600.
[86] Tang H, Duan X, Feng X, Liu L, Wang S, Li Y, Zhu D. Chem. Commun., 2009(6): 641.
[87] Feng X, Lv F, Liu L, Tang H, Xing C, Yang Q, Wang S. ACS applied materials & interfaces, 2010, 2(8): 2429.
[88] Green R A, Lovell N H, Poole-Warren L A. Acta Biomaterialia, 2010, 6: 63.
[89] Uang Y M, Chou T C. Electroanalysis, 2002, 14: 1564.

 

[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[3] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[4] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[5] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[6] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[7] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[8] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[9] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[10] Jidong Zhang, Achen Liu, Jiao Chen, Guanghui Yuan, Huafeng Jin. Fluorescent Organic Small Molecule Based on Biotin and Their Applications [J]. Progress in Chemistry, 2020, 32(5): 594-603.
[11] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[12] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.
[13] Mingfang Ma, Tianxiang Luan, Pengyao Xing, Zhaolou Li, Xiaoxiao Chu, Aiyou Hao. Low Molecular Weight Organic Compound Gel Based on β-cyclodextrin [J]. Progress in Chemistry, 2019, 31(2/3): 225-235.
[14] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[15] Peifeng Su, Hongxin Wu, Yongming Chen, Fei Peng. Micro/Nanomotors as Drug Delivery Agent [J]. Progress in Chemistry, 2019, 31(1): 63-69.