中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (11): 1867-1888 DOI: 10.7536/PC140729 Previous Articles   

• Review •

Development and Application of Microelectronic Photoresist

Wei Wei1, Liu Jingcheng1, Li Hu1, Mu Qidao2, Liu Xiaoya*1   

  1. 1. School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122;
    2. Suzhou Rui Hong Electronic Chemicals Co. Ltd., Suzhou 215124, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Science and Technology Major Project of China (No. 2010ZX02304)

PDF ( 3952 ) Cited
Export

EndNote

Ris

BibTeX

Photoresist is the indispensable and key material used for fabricating large-scale and super-large-scale integrated circuits in microelectronic industry. Due to its strategic role in the construction of national economy and national defense, photoresist has aroused great attention of researchers. Since the birth of the first integrated circuit board in 1959, photoresist has gradually evolved from the resists used for traditional ultraviolet (UV) photolithography, including early polyvinyl cinnamate, cyclized rubber/azide system, near-UV (436-nm G-line and 365-nm I-line) novolac/diazonaphthoquinone photoresists, deep-UV (DUV, 248-nm and 193-nm) and vacuum-UV (157-nm) photoresists, to the resists used for the so-called next generation lithography (NGL), such as extreme-UV lithography (EUVL), electron-beam lithography (EBL), nanoimprint lithography (NIL), block copolymer lithography (BCL), and scanning probe lithography (SPL). In this review, the above evolution of photoresist and its research progress are summarized based on a large amount of literature. Thereinto, DUV chemically amplified photoresists are focused, including matrix resins, photoacid generators, and additives (for example, dissolution inhibitors and basic compounds). In addition, the recent research achievements of the resists for EUVL, EBL, NIL, BCL, and SPL are also highlighted. Finally, the prospect and research directions of photoresist in the future are briefly discussed.

Contents
1 Introduction
2 Polyvinyl cinnamate and cyclized rubber negative-tone photoresists
3 G-line and I-line photoresists
3.1 Novolac/diazonaphthoquinone (DNQ) resists
3.2 Other systems
4 Deep-ultraviolet (DUV) photoresists
4.1 248-nm photoresists
4.2 193-nm photoresists
5 Vacuum-ultraviolet (157-nm) photoresists
6 Resists for next generation lithography (NGL)
6.1 Extreme-ultraviolet lithography (EUVL)
6.2 Electron-beam lithography (EBL)
6.3 Nanoimprint lithography (NIL)
6.4 Block copolymer lithography (BCL)
6.5 Scanning probe lithography (SPL)
7 Conclusions and perspective

CLC Number: 

[1] Moore G E. Electron, 1965, 38: 114.
[2] Reichmanis E, Nalamasu O, Houlihan F M. Acc. Chem. Res., 1999, 32: 659.
[3] Ito H. Adv. Polym. Sci., 2005, 172: 37.
[4] 郑金红(Zheng J H). 精细与专用化学品(Fine and Specialty Chemicals), 2006, 14(16): 24.
[5] Hepher M. US 2848328, 1958.
[6] Hepher M, Wagner H M. US 2852379, 1958.
[7] 王朝阳(Wang C Y), 黄学品(Huang X P), 杨继华(Yang J H). 橡胶工业(China Rubber Industry), 2000, 47(8): 464.
[8] 杨继华(Yang J H), 逄束芬(Pang S F), 孙涛(Sun T).特种橡胶制品(Special Purpose Rubber Products), 1992, 13(6): 241.
[9] 王朝阳(Wang C Y), 杨继华(Yang J H), 董为民(Dong W M), 逄束芬(Pang S F).应用化学(Chinese Journal of Applied Chemistry), 1998, 15(6): 57.
[10] 董为民(Dong W M), 逄束芬(Pang S F), 扈晶余(Hu J Y), 杨继华(Yang J H). 应用化学(Chinese Journal of Applied Chemistry), 2000, 17(3): 272.
[11] 余尚先(Yu S X), 顾江楠(Gu J N). 化学通报(Chemistry), 1986,(12): 1.
[12] Pacansky J, Lyerla J R. IBM J. Res. Dev., 1979, 23: 42.
[13] 郑金红(Zheng J H). 影像科学与光化学(Imaging Science and Photochemistry), 2012, 30(2): 81.
[14] Hanabata M, Oi F, Furuta A. Proc. SPIE, 1991, 1466: 132.
[15] Jeffries A, Brzozowy D, Greene N, Kokubo T, Tan S. Proc. SPIE, 1993, 1925: 235.
[16] Xu C B, Zampini A, Sandford H F, Lachowski J, Caemody J. Proc. SPIE, 1999, 3678: 739.
[17] Lazarus R M, Kautz R, Dixit S S. US 4920028, 1990.
[18] Miyamoto H, Nakamura T, Inomata K, Ota T, Tsuji A. Proc. SPIE, 1995, 2438: 223.
[19] Cornett K M, Dorn J B, Lawson M C, Linehan L L, Moreau W M, Smith R J, Spinillo G T. US 5561194, 1996.
[20] Kohara H, Nakayama T, Sato Y, Tanka H. US 4820621, 1989.
[21] Miura T, Shimokawa T, Yumoto Y. US 5110706, 1992.
[22] Kita N. US 4115128, 1978.
[23] Ueda M, Takahashi D, Nakayama T, Haba O. Chem. Mater., 1998, 10: 2230.
[24] Haba O, Haga K, Ueda M, Morikawa O, Konishi H. Chem. Mater., 1999, 11: 427.
[25] Young-Gil K, Kim J B, Fujigaya T, Shibasaki Y, Ueda M. J. Mater. Chem., 2002, 12: 53.
[26] Yu J, Xu N, Liu Z, Wang L. ACS Appl. Mater. Interfaces, 2012, 4: 2591.
[27] Yu J, Xu N, Wei Q, Wang L. J. Mater. Chem. C, 2013, 1: 1160.
[28] Liu J, Wei Q, Wang L. RSC Adv., 2013, 3: 25666.
[29] Chatterjeea S, Ramakrishnan S. Chem. Commun., 2013, 49: 11041.
[30] Ito H, Willson C G, Fréchet J M J. Digest of Technical Papers of 1982 Symposium on VLSI Technology, 1982. 86.
[31] Fréchet J M J, Eichler E, Ito H, Willson C G. Polymer, 1983, 24: 995.
[32] Sanders D P. Chem. Rev., 2010, 110: 321.
[33] 刘建国(Liu J G), 郑家燊(Zheng J S), 李平(Li P). 感光科学与光化学(Photographic Science and Photochemistry), 2006, 24(1): 67.
[34] Conlon D A, Crivello J V, Lee J L, O'Brien M J. Macromolecules, 1989, 22: 509.
[35] Woods R L, Lyons C F, Mueller R, Conway J. Proc. KTI Microelectronics Seminar, 1988. 341.
[36] Hayishi N, Schlegil L. Proc. SPIE, 1991, 1466: 377.
[37] Murata M, Kobayashi E, Yamachika M, Kobayashi Y, Yumoto Y, Miura T. J. Photopolym. Sci. Technol., 1992, 5: 79.
[38] Mizutani K, Sugiyama S. US 8142977 B2, 2012.
[39] Malik S, Blakeney A J, Ferreira L, Maxwell B, Whewell A, Sarubbi T R, Bowden M J, Driessche V V, Fujimori T, Tan S, Aoai T, Uenishi K, Kawabe Y, Kokubo T. Proc. SPIE, 1999, 3678: 388.
[40] Fujimori T, Tan S, Aoai T, Nishiyama F, Yamanaka T, Momota M, Kanna S, Kawabe Y, Yagihara M, Kokubo T, Malik S, Ferreira L. Proc. SPIE, 2000, 3999: 579.
[41] Kamimura S, Kawanishi Y, Wada K, Tsuchimura T. US 8110333 B2, 2012.
[42] Barclay G G, Cronin M F, Dellaguardia R A, Thackeray J W, Ito H, Breyta G. US 5861231, 1999.
[43] Katsuhiko N, Osaka H, Junji N, Kyoto K, Yasunori U, Osaka T. EP 1225479 B1, 2002.
[44] Ahn K D, Koo D I, Kim S J. J. Photopolym. Sci. Technol., 1991, 4: 433.
[45] DiPietro R A, Sooriyakumaran R, Swanson S A, Truong H D. US 7951525 B2, 2011.
[46] Fréchet J M J, Ito H, Willson C G. US 4491628, 1985.
[47] Dektar J L, Hacker N P. J. Am. Chem. Soc., 1990, 112: 6004.
[48] Chung C M, Ahn K D. React. Funct. Polym., 1999, 40: 1.
[49] Wu H, Gonsalves K E. Adv. Funct. Mater., 2001, 11: 271.
[50] Ito H, Nakayama T, Ueda M, Sherwood M, Miler D. Proc. ACS Div. Polym. Mater. Sci. Eng., 1999, 81: 51.
[51] Ito H, Nakayama T, Ueda M. US 6093517, 2000.
[52] Crivello J V, Shim S Y, Smith B W. Chem. Mater., 1994, 6: 2167.
[53] Pawlowski G, Przybilla K J, Spiess W, Wengenroth H, Roschert H. J. Photopolym. Sci. Technol., 1992, 5: 55.
[54] Przybilla K J, Kinoshita Y, Kudo T, Masuda S, Okazaki H, Padmanaban M, Pawlowski G, Roeschert H, Spiess W, Suehiro N. Proc. SPIE, 1993, 1925: 76.
[55] Chang S W, Li Y C, Lin S H, Wang W C. US 6265131 B1, 2001.
[56] Hayashi N, Schlegel L, Ueno T, Shiraishi H, Iwayanagi T. Proc. SPIE, 1991, 1466: 377.
[57] Kihara N, Saito S, Naito T, Ushirogouchi T, Asakawa K, Nakase M. J. Photopolym. Sci. Technol., 1997, 10: 417.
[58] Asakawa K, Ushiroguchi T, Nakase N. Proc. SPIE, 1995, 2438: 563.
[59] Bantu N R, Brunsvold W R, Hefferon G J, Huang W S, Katnani A D, Khofasteh M M, Sooriyakumaran R, Yang D C. US 5733705, 1998.
[60] 郑金红(Zheng J H), 黄志齐(Huang Z Q), 文武(Wen W). 精细化工(Fine Chemicals), 2005, 22(5): 348.
[61] Wallow T I, Allen R D, Brock P J, DiPietro R A, Ito H, Truong H D, Varanasi P R. US 6251560 B1, 2001.
[62] Nakayama O, Yada M. US 2013164675 A1, 2013.
[63] Ichikawa K, Sakamoto H, Fujita S. US 2013095424 A1, 2013.
[64] Fukumoto T, Yada M. US 2013164676 A1, 2013.
[65] Liu C, Li M, Xu C B. US 2013171429 A1, 2013.
[66] Ober M S, Bae Y C, Liu Y, Lee S H, Park J K. US 2013011783 A1, 2013.
[67] Medieros D, Okoroanyanwu U, Willson C G. US 6103445, 2000.
[68] Watanabe T, Kinsho T, Kobayashi T, Sunaga T, Okawa Y, Io H. US 8216766 B2, 2012.
[69] Shin J B, Kim J H, Shin D H, Lee S J. US 2012251952 A1, 2012.
[70] Chen L, Goh Y K, Cheng H H, Smith B W, Xie P, Montgomery W, Whittaker A K, Blakey I. J. Polym. Sci. Pol. Chem., 2012, 50: 4255.
[71] Sooriyakumaran R, Truong H, Sundberg L, Morris M, Hinsberg B, Ito H, Allen R, Huang W S, Goldfarb D, Burns S, Pfeiffer D. Proc. SPIE, 2005, 5753: 329.
[72] Cameron J F, Chan N, Moore K, Pohlers G. Proc. SPIE, 2001, 4345: 106.
[73] Takahashi H, Yamaguchi S, Kataoka S, Shirakawa M, Yoshino F, Saitoh S. US 2013078432 A1, 2013.
[74] Li M, Aqad A, Liu C, Chen C L, Yamada S, Xu C, Mattia J. US 2013137038 A1, 2013.
[75] Yoshida I, Mukai Y, Ichikawa K. US 2013052588 A1, 2013.
[76] Naito T, Asakawa K, Shida N, Ushirogouchi T, Nakase M. Jpn. J. Appl. Phys., 1994, 33: 7028.
[77] Kim S J, Park J H, Kim J H, Kim K D, Lee H, Jung J C, Bok C K, Kim K H. Proc. SPIE, 1996, 3049: 430.
[78] Kajita T, Ishii H, Usui S, Douki K, Chawanya H, Shimokawa T. J. Photopolym. Sci. Technol., 2000, 13: 625.
[79] Maeda K, Nakano K, Iwasa S, Hasegawa E. Microelectron. Eng., 2002, 61/62: 771.
[80] Nakano K, Maeda K, Iwasa S, Hasegawa E. US 5635332, 1997.
[81] Ando N, Takemoto I, Yoshida I, Harada Y. US 8378016 B2, 2013.
[82] Liu S, Varanasi P R. US 2013011789 A1, 2013.
[83] Reichmanis E, Nalamasu O, Houlihan F. Acc. Chem. Res., 1999, 32: 659.
[84] Dabbagh G, Houlihan F M, Rushkin I, Hutton R S, Nalamasu O, Reichmanis E, Gabor A H, Medina A N. Proc. SPIE, 1999, 3678: 86.
[85] Maniscalco J F, Varanasi P R. US 6124074, 2000.
[86] Asakawa K, Ushiroguchi T, Nakase N. Proc. SPIE, 1995, 2438: 563.
[87] Houlihan F M, Kometani J M, Timko A G, Hutton R S, Cirelli R A, Reichmanis E, Nalamasu O, Gabor A H, Medina A N, Biafore J J, Slater S G. J. Photopolym. Sci. Technol., 1998, 11: 419.
[88] Hagiwara Y, Mesch R A, Kawakami T, Okazaki M, Jockusch S, Li Y, Turro N J, Willson C G. J. Org. Chem., 2013, 78: 1730.
[89] Hallett-Tapley G L, Wee T L E, Tran H, Rananavare S B, Blackwell J M, Scaiano J C. J. Mater. Chem. C, 2013, 1: 2657.
[90] Chen K J, Huang W S, Kwong R W L, Liu S, Varanasi P R. US 8236476 B2, 2012.
[91] Lin B J. J. Microlith., Microfab., Microsyst., 2002, 1: 7.
[92] Hirayama T, Takasu R, Sato M, Wakiya K, Yoshida M, Tamura K. US 7371510, 2008.
[93] Yamashita T, Ishikawa T, Yoshida T, Hayamai T, Araki T, Aoyama H, Hagiwara T, Itani T, Fujii K. Proc. SPIE, 2005, 5753: 564.
[94] Takebe Y, Shirota N, Sasaki T, Murata K, Yokokoji O. Proc. SPIE, 2008, 6923: 69231U.
[95] Hata M, Ryoo M H, Choi S J, Cho H K. J. Photopolym. Sci. Technol., 2006, 19: 579.
[96] Ito H, Sundberg L K. US 7358035, 2008.
[97] Rhodes L F, Chang C, Kandanarachchi P, Seger L D, Ishiduka K, Endo K, Ando T. US 7799883 B2, 2010.
[98] Wang D, Trefonas P III, Gallagher M K. US 7776506 B2, 2010.
[99] Lee S H, Kim J W, Oh S K, Park C S, Lee J Y, Kim S S, Lee J W, Kim D B, Kim J, Ban K D, Bok C R, Moon S C. Proc. SPIE, 2007, 6519: 651925.
[100] Willson C G, Roman B J. ACS Nano, 2008, 2: 1323.
[101] Kunz R R, Bloomstein T M, Hardy D E, Goodman R B, Downs D K, Curtin J E. Proc. SPIE, 1999, 3678: 13.
[102] Ito H, Wallraff G M, Fender N, Brock P J, Hinsberg W D, Mahorowala A, Larson C E, Truong H D, Breyta G, Allen R D. J. Vac. Sci. Technol., 2001, B19: 2678.
[103] Feiring A E, Crawford M K, Farnham W B, French R H, Leffew K W, Petrov V A, Schadt III F L, Tran H V, Zumsteg F C. Macromolecules, 2006, 39: 1443.
[104] Tran H V, Hung R J, Chiba T, Yamada S, Mrozek T, Hsieh Y T, Chambers C R, Osborn B P, Trinque B C, Pinnow M J, MacDonald S A, Willson C G. Macromolecules, 2002, 35: 6539.
[105] Hamad A H, Bae Y C, Liu X Q, Ober C K, Houlihan F M, Dabbagh G, Novembre A E. Proc. SPIE, 2002, 4690: 477.
[106] Bae Y C, Weibel G L, Hamad A H, Schmaljohann D, Ober C K. Forefront of lithographic materials research(Eds. Ito H, Khojasteh M, Li W). NY: Society of Plastics Engineers, Mid Hudson Section, 2001. 75.
[107] Bae Y C, Douki K, Yu T, Dai J, Schmaljohann D, Kang S H, Kim K H, Koerner H, Conley W, Miller D, Balasubramanian R, Holl S, Ober C K. J. Photopolym. Sci. Technol., 2001, 14: 613.
[108] Ito H, Wallraff G M, Brock P, Fender N, Truong H, Breyta G, Miller D C, Sherwood M H, Allen R D. Proc. SPIE, 2001, 4345: 273.
[109] Fedynyshyn T H, Mowers W A, Kunz R R, Sinta R F, Sworin M, Cabral A, Curtin J. ACS Symposium Series, 2004, 874: 54.
[110] Ober C K, Douki K, Vohra V R, Kwark Y J, Liu X Q, Conley W, Miller D, Zimmerman P. J. Photopolym. Sci. Technol., 2002, 15: 603.
[111] Kodama S, Kaneko I, Takebe Y, Okada S, Kawaguchi Y, Shida N, Ishikawa S, Toriumi M, Itani T. Proc. SPIE, 2002, 4690: 76.
[112] Fujigaya T, Ando S, Shibasaki Y, Kishimura S, Endo M, Sasago M, Ueda M. J. Photopolym. Sci. Technol., 2002, 15: 643.
[113] Conley W, Miller D, Chambers C, Osborn B, Hung R J, Tran H V, Trinque B C, Pinnow M, Chiba T, McDonald S, Zimmerman P, Dammel R, Romano A, Willson C G. Proc. SPIE, 2002, 4690: 69.
[114] Seligson D, Pan L, King P, Pianetta P. Nucl. Instr. Meth. Phys. Res., A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 1988, A266: 612.
[115] Matsuzawa N N, Oizumi H, Mori S, Irie S, Yano E, Okazaki S, Ishitani A. Microelec. Eng., 2000, 53: 671.
[116] Shirai M, Maki K, Okamura H, Kaneyama K, Itani T. J. Photopolym. Sci. Technol., 2009, 22: 111.
[117] Dai J, Ober C K, Wang L, Cerrina F, Nealey P F. Proc. SPIE, 2002, 4690: 1193.
[118] Kwark Y J, Bravo-Vasquez J P, Ober C K, Cao H B, Deng H, Meagley R P. Proc. SPIE, 2003, 5039: 1204.
[119] Silva A D, Felix N M, Ober C K. Adv. Mater., 2008, 20: 3355.
[120] Silva A D, Ober C K. J. Mater. Chem., 2008, 18: 1903.
[121] Chang S W, Ayothi R, Bratto D, Yang D, Felix N, Cao H B, Deng H, Ober C K. J. Mater. Chem., 2006, 16: 1470.
[122] Kudo H, Suyama Y, Oizumi H, Itani T, Nishikubo T. J. Mater. Chem., 2010, 20: 4445.
[123] 许箭(Xu J), 王双青(Wang S Q), 杨国强(Yang G Q). 第十三届全国光化学学术讨论会论文集(13th China Photochemistry Conference-Abstract). 西安(Xi’an), 2013. 80.
[124] 陈力(Chen L), 王双青(Wang S Q), 杨国强(Yang G Q). 第十三届全国光化学学术讨论会论文集(13th China Photochemistry Conference-Abstract). 西安(Xi’an), 2013. 138.
[125] Jain V, Green D P, Thackeray J W, Bailey B C, Kang S J. US 2013078569 A1, 2013.
[126] Green D P, Jain V, Bailey B C. US 2013157195 A1, 2013.
[127] Thiyagarajan M, Gonsalves K E, Dean K, Sykes E, Charles H. J. Nanosci. Nanotechno., 2005, 5: 1181.
[128] Satyanarayana V S V, Kessler F, Singh V, Scheffer F R, Weibel D E, Ghosh S, Gonsalves K E. ACS Appl. Mater. Interfaces, 2014, 6: 4223.
[129] Trikeriotis M, Krysak M, Chung Y S, Ouyang C, Cardineau B, Brainard R, Ober C K, Giannelis E P, Cho K. Proc. SPIE, 2012, 8322: 83220U.
[130] Ouyang C Y, Chung Y S, Li L, Neisser M, Cho K, Giannelis E P, Ober C K. Proc. SPIE, 2013, 8682: 86820R.
[131] Cardineau B, Re R D, Al-Mashat H, Marnell M, Vockenhuber M, Ekinci Y, Sarma C, Neisser M, Freedman D A, Brainard R L. Proc. SPIE, 2014, 9051: 90511B.
[132] Bratton D, Yang D, Dai J, Ober C K. Polym. Adv. Technol., 2006, 17: 94.
[133] Singh V, Satyanarayana V S V, Sharma S K, Ghosh S, Gonsalves K E. J. Mater. Chem. C, 2014, 2: 2118.
[134] Canalejas-Tejero V, Carrasco S, Navarro-Villoslada F, Fierro J L G, Capel-Sánchez M C, Moreno-Bondi M C, Barrios C A. J. Mater. Chem. C, 2013, 1: 1392.
[135] Yang C C, Chen W C. J. Mater. Chem., 2002, 12: 1138.
[136] Manfrinato V R, Cheong L L, Dun H, Winston D, Smith H I, Berggren K K. Microelectron. Eng., 2011, 88: 3070.
[137] Guerfi Y, Carcenac F, Larrieu G. Microelectron. Eng., 2013, 110: 173.
[138] Currivan J A, Siddiqui S, Ahn S, Tryputen L, Beach G S D, Baldo M A, Ross C A. J. Vac. Sci. Technol. B, 2014, 32: 021601.
[139] Kadota T, Kageyama H, Wakaya F, Gamo K, Shirota Y, J. Photopolym. Sci. Technol., 2000, 13: 203.
[140] Bauer W A C, Neuber C, Ober C K, Schmidt H W. Adv. Mater., 2011, 23: 5404.
[141] Ito H, Nakayama T, Sherwood M, Miller D, Ueda M. Chem. Mater., 2008, 20: 341.
[142] Yamada A, Hattori S, Saito S, Asakawa K, Koshiba T, Nakasugi T. Proc. SPIE, 2010, 7639: 76390S/1.
[143] Gibbons F, Zaid H M, Manickam M, Preece J A, Palmer R E, Robinson A P G. Small, 2007, 3: 2076.
[144] Kim S, Marelli B, Brenckle M A, Mitropoulos A N, Gil E S, Tsioris K, Tao H, Kaplan D L, Omenetto F G. Nature Nanotechnology, 2014, 9: 306.
[145] Guo L J. Adv. Mater., 2007, 19: 495.
[146] Chou S Y, Krauss P R, Renstrom P J. Appl. Phys. Lett., 1995, 67: 3114.
[147] Ruchhoeft P, Colburn M, Choi B, Nounu H, Johnson S, Bailey T, Damle S, Stewart M, Ekerdt J, Sreenivasan S V, Wolfe J C, Willson C G. J. Vac. Sci. Technol. B, 1999, 17: 2965.
[148] Schulz H, Scheer H C, Hoffmann T, Torres C M S, Pfeiffer K, Bleidiessel G, Grutzner G, Cardinaud C, Gaboriau F, Peignon M C, Ahopelto J, Heidari B. J. Vac. Sci. Technol. B, 2000, 18: 1861.
[149] Mekaru H, Noguchi T, Goto H, Takahashi M. Jpn. J. Appl. Phys., 2007, 46: 6355.
[150] Hu W, Crouch A S, Miller D, Aryal M, Luebke K J. Nanotechnology, 2010, 21: 3.
[151] Choi P, Fu P, Guo L J. Adv. Funct. Mater., 2007, 17: 65.
[152] Malaquin L, Carcenac F, Vieu C, Mauzac M. Microelectron. Eng., 2002, 61/62: 379.
[153] Colburn M, Johnson S, Stewart M, Damle S, Bailey T, Choi B, Wedlake M, Michaelson T, Sreenivasan S, Ekerdt J, Willson C G. Proc. SPIE, 1999, 3676: 379.
[154] Kim E K, Stewart M D, Wu K, Palmieri F L, Dickey M D, Ekerdt J G, Willson C G. J. Vac. Sci. Technol. B, 2005, 23: 2967.
[155] Cheng X, Guo L J, Fu P F. Adv. Mater., 2005, 17: 1419.
[156] Mele E, Di Benedetto F, Persano L, Cingolani R, Pisignano D. Nano Lett., 2005, 5: 1915.
[157] Li D, Guo L J. Appl. Phys. Lett., 2006, 88: 63513.
[158] Nielsen T, Nilsson D, Bundgaard F, Shi P, Szabo P, Geschke O, Kristensen A. J. Vac. Sci. Technol. B, 2004, 22: 1770.
[159] Cheng L J, Kao M T, Meyhfer E, Guo L J. Small, 2005, 1: 409.
[160] Hirai Y, Tanaka Y. J. Photopolym. Sci. Technol., 2002, 15: 475.
[161] Matsui S, Igaku Y, Ishigaki H, Fujita J, Ishida M, Ochiai Y, Namatsu H, Komuro M. J. Vac. Sci. Technol. B, 2003, 21: 688.
[162] Liu S, Xu Z, Sun T, Zhao W, Wu X, Ma Z, Xu H, He J, Chen C. Appl. Phys. A-Mater., 2014, 115: 979.
[163] Jeong H, Song H, Park Y, Kwon II K, Jo K, Lee H, Jung G Y. Adv. Mater., 2014, 26: 3445.
[164] Tang C, Lennon E M, Fredrickson G H, Kramer E J, Hawker C J. Science, 2008, 322: 429.
[165] Zhao Y, Sivaniah E, Hashimoto T. Macromolecules, 2008, 41: 9948.
[166] Park S, Lee D H, Xu J, Kim B, Hong S W, Jeong U, Xu T, Russell T P. Science, 2009, 323: 30.
[167] Cushen J D, Otsuka I, Bates C M, Halila S, Fort S, Rochas C, Easley J A, Rausch E L, Thio A, Borsali R, Willson C G, Ellison C J. ACS Nano, 2012, 6: 3424.
[168] Cushen J D, Bates C M, Rausch E L, Dean L M, Zhou S X, Willson C G, Ellison C J. Macromolecules, 2012, 45: 8722.
[169] Kennemur J G, Hillmyer M A, Bates F S. Macromolecules, 2012, 45: 7228.
[170] Bates C M, Maher M J, Janes D W, Ellison C J, Willson C G. Macromolecules, 2014, 47: 2.
[171] Stoykovich M P, Muller M, Kim S O, Solak H H, Edwards E W, de Pablo J J, Nealey P F. Science, 2005, 308: 1442.
[172] Jung Y S, Chang J B, Verploegen E, Berggren K K, Ross C A. Nano Lett., 2010, 10: 1000.
[173] Tada Y, Yoshida H, Ishida Y, Hirai T, Bosworth J K, Dobisz E, Ruiz R, Takenaka M, Hayakawa T, Hasegawa H. Macromolecules, 2011, 45: 292.
[174] Wang J, de Jeu W H, Speiser M, Kreyes A, Ziener U, Magerl D, Philipp M, Muller-Buschbaum P, Moller M, Mourran A. Soft Matter, 2013, 9: 1337.
[175] Majewski P W, Gopinadhan M, Osuji C O. J. Polym. Sci., Part B: Polym. Phys., 2012, 50: 2.
[176] Singh G, Yager K G, Smilgies D M, Kulkarni M M, Bucknall D G, Karim A. Macromolecules, 2012, 45: 7107.
[177] Park S M, Liang X, Harteneck B D, Pick T E, Hiroshiba N, Wu Y, Helms B A, Olynick D L. ACS Nano, 2011, 5: 8523.
[178] Ji S, Liu C C, Liu G, Nealey P F. ACS Nano, 2009, 4: 599.
[179] Jeong S J, Kim S O. J. Mater. Chem., 2011, 21: 5856.
[180] Piner R D, Zhu J, Xu F, Hong S H, Mirkin C A. Science, 1999, 283: 661.
[181] Xie Z, Zhou X, Tao X, Zheng Z. Macromol. Rapid Commun., 2012, 33: 359.
[182] Gotsmann B, Knoll A W, Pratt R, Frommer J, Hedrick J L, Duerig U, Adv. Funct. Mater., 2010, 20: 1276.
[183] Kingsley J W, Ray S K, Adawi A M, Leggett G J, Lidzey D G. Appl. Phys. Lett., 2008, 93: 213103.
[184] Vettiger P, Despont M, Drechsler U, Durig U, Haberle W, Lutwyche M I, Rothuizen H E, Stutz R, Widmer R, Binnig G K, IBM J. Res. Dev., 2000, 44: 323.
[185] Gotsmann B, Knoll A W, Pratt R, Frommer J, Hedrick J L, Duerig U. Adv. Funct. Mater., 2010, 20: 1276.
[186] Hernandez-Santana A, Irvine E, Faulds K, Graham D. Chem. Sci., 2011, 2: 211.
[187] Kaestner M, Rangelow I W. Proc. SPIE, 2012, 8323: 83231G.
[188] Lee W K, Dai Z T, King W P, Sheehan P E. Nano Lett., 2010, 10: 129.
[189] Hernandez-Santana A, Mackintosh A R, Guilhabert B, Kanibolotsky A L, Dawson M D, Skabara P J, Graham D. J. Mater. Chem., 2011, 21: 14209.
[190] Li L, Hirtz M, Wang W, Du C, Fuchs H, Chi L. Adv. Mater., 2010, 22: 1374.
[191] Barczewski M, Walheim S, Heiler T, Blaszczyk A, Mayor M, Schimmel T. Langmuir, 2010, 26: 3623.

[1] Liang Shan Miao Chen. Preparation of Patterned TiO2 Thin Films [J]. Progress in Chemistry, 2008, 20(11): 1659-1665.
[2] Meng Shiyun,Li Guangxian*,Yang Qi,Huang Yajiang. Progress in the Synthesis of Poly(4-Hydroxystyrene) for Polymer Photoresists [J]. Progress in Chemistry, 2004, 16(02): 243-.
[3]

Liu Xihuan

. Current Status and Trend of Electronic Chemical Materials [J]. Progress in Chemistry, 1995, 7(03): 173-.