中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (12): 1889-1898 DOI: 10.7536/PC140727 Previous Articles   Next Articles

• Review •

The Functional Materials and Structure of Organic Photodiodes

Li Dong, Li Wenhai, Dong Guifang*, Duan Lian, Wang Liduo   

  1. Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 61177023, 51173096 and 61474069)

PDF ( 1389 ) Cited
Export

EndNote

Ris

BibTeX

Organic photodiodes (OPDs) have attracted great attention for potential applications in organic optocouplers, image sensors, immune detection and optical communication, due to their advantages of low cost, plenty of functional materials, tunable absorption wavelengths and compatibility with flexible substrates. This article presents an overview of organic photosensitive materials widely used in OPDs, with response spectra regioning from UV to near infra-red. Researches on structure optimization, interface modification, carriers transmission mechanism and internal optical distribution of OPDs are summarized. Some practical applications of the OPDs in optoelectronic fields are also introduced. Finally, an outlook on future development of OPDs is briefly brought up.

Contents
1 Introduction
2 The progress of materials on organic photodiodes
2.1 The materials used in organic photodiodes for visible light
2.2 The materials used in organic photodiodes for UV light
2.3 The materials used in organic photodiodes for near infra-red light
3 The structural optimization and interface modification for the organic photodiodes
3.1 The organic photodiodes with planar heterojunction structure
3.2 The organic photodiodes with bulk heterojunction structure
3.3 The organic photodiodes with other structure
3.4 The research of interface mechanism in organic photodiodes
3.5 The calculation of optical distribution in organic photodiodes
3.6 The stability of organic photodiodes
4 Outlook on future development of organic photodiodes

CLC Number: 

[1] Bateman J E. Nucl. Instrum. Methods, 1969, 71: 269.
[2] Ng T N, Wong W S, Chabinyc M L, Sambandan S, Street R A. Appl. Phys. Lett., 2008, 92: 213303.
[3] Li D, Liu X, Dong G, Duan L, Zhang D, Zhao H, Wang L, Qiu Y. Laser & Photonics Reviews, 2014, 8: 316.
[4] Arias A C, MacKenzie J D, McCulloch I, Rivnay J, Salleo A. Chem. Rev., 2010, 110: 3.
[5] Wang X H, Amatatongchai M, Nacapricha D, Hofmann O, de Mello J C, Bradley D D C, de Mello A J. Sensors and Actuators B-Chemical, 2009, 140: 643.
[6] Lee J, Jadhav P, Baldo M. Appl. Phys. Lett., 2009, 95: 033301.
[7] Tedde S F, Kern J, Sterzl T, FüRst J, Lugli P, Hayden O. Nano Lett., 2009, 9: 980.
[8] Hamasaki T, Morimune T, Kajii H, Minakata S, Tsuruoka R, Nagamachi T, Ohmori Y. Thin Solid Films, 2009, 518: 548.
[9] Lee K H, Leem D S, Sul S, Park K B, Lim S J, Han H, Kim K S, Jin Y W, Lee S, Park S Y. Journal of Materials Chemistry C, 2013, 1: 2666.
[10] Dong G F, Zheng H Y, Duan L, Wang L D, Qiu Y. Adv. Mater., 2009, 21: 2501.
[11] Jansen-Van Vuuren R D, Pivrikas A, Pandey A K, Burn P L. Journal of Materials Chemistry C, 2013, 1: 3532.
[12] Lee K H, Leem D S, Castrucci J S, Park K B, Bulliard X, Kim K S, Jin Y W, Lee S, Bender T P, Park S Y. ACS Applied Materials & Interfaces, 2013, 5: 13089.
[13] Higashi Y, Kim K S, Jeon H G, Ichikawa M. J. Appl. Phys., 2010, 108: 034502.
[14] Liu C, Liu L, Che G, Cui Y, Wang Q, Li W, Liu M. Sol. Energy Mater. Sol. Cells, 2012, 96: 29.
[15] Liu C B, Liu M, Che G B, Su B, Wang L, Zhang X X, Zhang S. Solid-State Electronics, 2013, 89: 68.
[16] Dai Q, Zhang X. Opt. Express, 2010, 18: 11821.
[17] Fang Y, Guo F, Xiao Z, Huang J. Advanced Optical Materials, 2014, 2: 348.
[18] Wu S H, Li W L, Chu B, Lee C, Su Z S, Wang J B, Yan F, Zhang G, Hu Z Z, Zhang Z Q. Appl. Phys. Lett., 2010, 96: 093302.
[19] Li H G, Wu G, Chen H Z, Wang M. Org. Electron., 2011, 12: 70.
[20] Chen F C, Chien S C, Cious G L. Appl. Phys. Lett., 2010, 97: 103301.
[21] Binda M, Iacchetti A, Natali D, Beverina L, Sassi M, Sampietro M. Appl. Phys. Lett., 2011, 98: 073303.
[22] Dalgleish S, Matsushita M M, Hu L, Li B, Yoshikawa H, Awaga K. J. Am. Chem. Soc., 2012, 134: 12742.
[23] Hu X, Dong Y, Huang F, Gong X, Cao Y. The Journal of Physical Chemistry C, 2013, 117: 6537.
[24] Li L, Huang Y, Peng J, Cao Y, Peng X. Journal of Materials Chemistry C, 2014, 2: 1372.
[25] Yang T, Sun K, Liu X, Wei W, Yu T, Gong X, Wang D, Cao Y. The Journal of Physical Chemistry C, 2012, 116: 13650.
[26] Verilhac J. In Recent Developments of Solution-Processed Organic Photodetectors, Semiconductor Conference Dresden-Grenoble (ISCDG), 2012 International, IEEE. 2012. 101.
[27] Yan F, Liu H, Li W, Chu B, Su Z, Zhang G, Chen Y, Zhu J, Yang D, Wang J. Appl. Phys. Lett., 2009, 95: 253308.
[28] Guo F, Xiao Z, Huang J. Advanced Optical Materials, 2013, 1: 289.
[29] Liu X L, Wang H X, Yang T B, Zhang W, Gong X. Appl. Mater. Inter., 2012, 4: 3701.
[30] Leem D S, Lee K H, Park K B, Lim S J, Kim K S, Jin Y W, Lee S. Appl. Phys. Lett., 2013, 103: 043305.
[31] Saracco E, Bouthinon B, Verilhac J M, Celle C, Chevalier N, Mariolle D, Dhez O, Simonato J P. Adv. Mater., 2013, 25: 6534.
[32] Yang D, Zhou X, Ma D. Org. Electron., 2013, 14: 3019.
[33] Yang D, Ma D. Journal of Materials Chemistry C, 2013, 1: 2054.
[34] Xie Y, Wei L, Li Q, Wei G, Wang D, Chen Y, Jiao J, Yan S, Liu G, Mei L. Appl. Phys. Lett., 2013, 103: 261109.
[35] Game O, Singh U, Kumari T, Banpurkar A, Ogale S. Nanoscale, 2014, 6: 503.
[36] Arca F, Tedde S F, Sramek M, Rauh J, Lugli P, Hayden O. Scientific Reports, 2013, 3: 1324.
[37] Wang Q, Aziz H. Org. Electron., 2013, 14: 3030.
[38] Sun Q, Dong G, Li D, Duan L, Wang L, Qiu Y. Org. Electron., 2012, 13: 3276.
[39] Peumans P, Yakimov A, Forrest S R. J. Appl. Phys., 2003, 93: 3693.
[40] O'connor B, An K H, Pipe K P, Zhao Y, Shtein M. Appl. Phys. Lett., 2006, 89: 233502.
[41] Chen F C, Wu J L, Hung Y. Appl. Phys. Lett., 2010, 96: 193304.
[42] Li W H, Li D, Dong G F, Duan L, Wang L D. Org. Electron., 2014,15:3231.

[1] Jing Wang, Nan Yao*. Ni-Based Catalysts for Syngas Methanation Reaction [J]. Progress in Chemistry, 2017, 29(12): 1509-1517.
[2] Li Yanping, Yu Huangzhong, Dong Yifan, Huang Xinxin. Anode Interface Modification of Organic Solar Cells with Solution-Prepared MoO3 [J]. Progress in Chemistry, 2016, 28(8): 1170-1185.