中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (11): 1772-1780 DOI: 10.7536/PC140720 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Characteristic of Gas Evolution in Lithium-Ion Batteries Using An Anode Based on Lithium Titanate

Wang Qian1,2, Zhang Jingze*1,2, Lou Yuwan1, Xia Baojia1   

  1. 1. Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51277173, 21373257) and the Key Basic Research Programs of Science and Technology Commission of Shanghai Municipality(No.11JC1414600)

PDF ( 3046 ) Cited
Export

EndNote

Ris

BibTeX

At present, carbonaceous materials are extensively adopted as an anode for commercial lithium-ion batteries. Zero-strain lithium titanate is generally considered as a more safe and long-life span anode compared with carbonaceous materials, and it will find specific applications in various fields such as hybrid electric vehicles, wind-light-electricity grids, and smart grids. However, the lithium-ion batteries using the lithium titanate as anode will easily swell during the charge-discharge cycle and storage, thus resulting in shell distortion, gas evolution, performance deterioration, and so on. This greatly prevents the practical application of lithium titanate.In this paper, the industrial developments of the four kinds of lithium-ion batteries using the lithium titanate anode are reviewed, and the associated cathode materials are Li (Nix Coy Mn1-x-y) O2, LiMn2O4, LiFePO4, and LiCoO2, respectively. The latest research progress of the gas evolution mechanism is summarized from the perspectives of the interfacial characteristics, the water content, the electrolyte reductive decomposition, the negative electrode potential, and the impurities. At the same time, combined with the author's research work, the improving measures are put forward from the viewpoints of material, process, and application. Finally, the key issues and prospects of gassing are also commented.

Contents
1 Introduction
2 Industry status of lithium ion battery using lithium titanate as anode materials
3 Interface properties of lithium titanate material
4 The mechanism of gas evolution in lithium-ion batteries using an anode based on lithium titanate
4.1 Moisture
4.2 In the decomposition of electrolyte solution of lithium titanate electrode surface
4.3 Gas evolution reaction and the negative electrode potential
4.4 Impurities
5 Method to suppress gas evolution in lithium-ion batteries using an anode based on lithium titanate
5.1 Remove water or acid
5.2 Optimization of electrolyte
5.3 Surface treatment of lithium titanate material
5.4 Battery temperature and gas evolution
5.5 Optimization of lithium titanate battery manufacture process
6 Conclusion and outlook

CLC Number: 

[1] Scharner S, Weppner W, Beurmann P S. J. Electrochem. Soc., 1999,146: 857.
[2] Ma J, Wang C, Wroblewski S. J. Power Sources, 2007, 164: 849.
[3] Norio T, Hiroki I, Takashi K, Yasuhiro H, Yumi F, Keigo H. J. Electrochem. Soc., 2009, 156: A128.
[4] Yi T F, Xie Y, Zhu Y R, Zhu R S, Shen H Y. J. Power Sources, 2013, 222: 448.
[5] Belharouak I, Sun Y K, Lu W, Amine K. J. Electrochem. Soc., 2007, 154: A1083.
[6] Imazaki M, Wang L, Kawai T, Ariyoshi K, Ohzuku T. Electrochim. Acta, 2011, 56: 4576.
[7] Zaghib K, Dontigny M, Perret P, Guerfi A, Ramanathan M, Prakash J, Mauger A, Julien C M. J. Power Sources, 2014, 248: 1050.
[8] Wu K, Yang J, Zhang Y, Wang C Y, Wang D Y. J Appl Electrochem., 2012, 42: 989.
[9] Tetsuya Y, Eto K. Sakai H. US 6645673, 2003.
[10] Spitler T, Prochazka J, Kavan L, Graetzel M, Sugnaux F. EP 1412993, 2009.
[11] Kanda R, Yoshida K. JP 2012180251, 2012.
[12] 吴孟涛(Wu M T), 徐宁(Xu N), 肖彩英(Xiao C Y), 周大桥(Zhou D Q), 孟凡玉(Meng F Y), 黄来和(Huang L H). CN 101262078A,2008.
[13] 崔明(Cui M), 许汉良(Xu H L), 张帆(Zhang F), 黄赛先(Huang S X). CN 101582522A,2009.
[14] 张建(Zhang J), 颜剑(Yan J), 张熙贵(Zhang X G), 刘浩涵(Liu H H), 李佳(Li J), 夏保佳(Xia B J). CN 101414693A,2009.
[15] 苏剑(Su J), 李红兵(Li H B). 机车电传动(Electric Drive for locomotives), 2011, 4: 37.
[16] 王占国(Wang Z G), 龚敏明(Gong M M). 中国铁路(Chinese Railways), 2011, 12: 64.
[17] He Y B, Li B H, Liu M, Zhang C, Lv W, Yang C, Li J, Du H D, Zhang B, Yang Q H, Kim J K, Kang F Y. Scientific Reports, 2012, 2: 1.
[18] Takami N, Inagaki H, Tatebayashi Y, Saruwatari H, Honda K, Egusa S. J. Power Sources, 2013, 244: 469.
[19] 赵永胜(Zhao Y S), 韩恩山(Han E S), 黄金辉(Huang J H). 电池(Battery Bimonthly), 2011, 41(6): 322.
[20] 刘兴江(Liu X J), 杨凯(Yang K), 郭春雨(Guo C Y), 仁惠祺(Ren H Q).电源技术(Chin. J. Power Sources), 2009, 33(2): 109.
[21] 李燕(Li Y), 翟丽娟(Zhai L J), 秦兆东(Qin Z D), 刘志远(Liu Z Y), 朱广燕(Zhu G Y).新材料产业(Adv. Mater. Ind), 2010, 2: 70.
[22] 吴宁宁(Wu N N), 吴可(Wu K), 安富强(An F Q), 田文怀(Tian W H). 电源技术(Chin. J. Power Sources), 2012, 36(2): 175.
[23] 崔明(Cui M), 许汉良(Xu H L), 张帆(Zhang F), 郭付祥(Guo F X), 南俊民(Nan J M). In the 28th Annual Meeting on Power Sources, Journal of South China Normal University, 2009, 103.
[24] 冯祥明(Feng X M), 李璐(Li L), 张建民(Zhang J M), 杨长春(Yang C C). 电池(Battery Bimonthly), 2011, 41(2): 85.
[25] 朱希平(Zhu X P), 贺艳兵(He Y B).应用化工(Appl. Chem. Ind), 2012, 41(5): 884.
[26] 吴晓东(Wu X D). CN 101710753A, 2010.
[27] Shu J. Electrochem. Solid-State Lett., 2008, 11: A238.
[28] Demeaux J, Vito E D, Digabel M L, Galiano H, Montigny B C, Lemordant D. Phys. Chem. Chem. Phys., 2014, 16: 5201.
[29] Song M S, Kim R H, Baek S W, Lee K S, Park K, Benayad A. J. Mater. Chem. A, 2014, 2: 631.
[30] Kitta M, Akita T, Maeda Y, Kohyama M. Langmuir, 2012, 28: 12384.
[31] Yu H Y, Zhang D, Zhu Z, Lu Q. J. Power Sources, 2014, 257: 96.
[32] Gao Y R, Wang Z X, Chen L Q. J. Power Sources, 2014, 245: 684.
[33] Jiang J W, Dahn J R. Electrochim. Acta, 2004, 49, 4599.
[34] Yamaki J, Takatsuji H, Kawamura T, Egashira M. Solid State Ionics, 2002, 148: 241.
[35] Roth E P, Doughty D H, Franklin J. J. Power Sources, 2004, 134: 222.
[36] Kitta M, Matsuda T, Maeda Y, Akita T, Tanaka S, Kido Y, Kohyama M. Surf. Sci., 2014, 619: 5.
[37] Snyder M Q, DeSisto W J, Tripp C P. Appl. Surf. Sci., 2007, 253: 9336.
[38] Nakajima T, Ueno A, Achiha T, Ohzawa Y, Endo M J. Fluorine Chem., 2009, 130: 810.
[39] Ding Z J, Zhao L, Suo L M, Jiao Y, Meng S, Hu Y S, Wang Z X, Chen L Q. Phys. Chem. Chem. Phys., 2011, 13: 15127.
[40] Dedryvère R, Foix D, Franger S, Patoux S, Daniel L, Gonbeau D. J. Phys. Chem. C, 2010, 114: 10999.
[41] Li S R, Chen C H, Xia X, Dahn J R. J. Electrochem. Soc., 2013, 160: A1524.
[42] Wu K, Yang J, Liu Y, Zhang Y, Wang C Y, Xu J M, Ning F, Wang D Y. J. Power Sources, 2013, 237: 285.
[43] Bernhard R, Meini S, Gasteiger H A. J. Electrochem. Soc., 2014, 161: A497.
[44] Belharouak I, Koenig G M, Amine K. J. Power Sources, 2011, 196: 10344.
[45] Belharouak I, Koenig G M, Tan T, Yumoto H, Ota N, Amine K J. Electrochem. Soc., 2012, 159: A1165.
[46] Khan S U M, Shahry M A, Ingler W B. Science, 2002, 297: 2243.
[47] 宁峰(Ning F). 清华大学硕士论文(Master Dissertation Thesis, Tsinghua University), 2011.
[48] Wu K, Yang J, Qiu X Y, Xu J M, Zhang Q Q, Jin J, Zhuang Q C. Electrochim. Acta, 2013, 108: 841.
[49] Onal I, Soyer S, Senkan S. Surf. Sci., 2006, 600: 2457.
[50] Borghols W J H, Hecht D L, Haake U, Chan W, Lafont U, Kelder E M, van Eck E R H, Kentgens A P M, Mulder F M, Wagemaker M J. Electrochem. Soc., 2010, 157: A582.
[51] 杨全生(Yang Q S),刘朋(Liu P). CN 101710623 A,2010.
[52] 吴可(Wu K), 王印萍(Wang Y P), 高雅(Gao Y), 雷向利(Lei X L), 吴宁宁(Wu N N), 王雅和(Wang Y H). CN102055020A,2011.
[53] He Y B, Liu M, Huang Z D, Zhang B, Yu Y, Li B H, Kang F Y, Kim J K. J. Power Sources, 2013, 239: 269.
[54] 吴晓东(Wu X D). CN 101740816A,2010.
[55] Tang B B X, Tan T, Bark D S. CN 101682028A,2010.
[56] 屈丽辉(Qu L H), 江文锋(Jiang W F), 刘彦初(Liu Y C), 夏玉(Xia Y),潘福中(Pan F Z). CN 101901891A, 2010.
[57] He Y B, Ning F, Li B H, Song Q S, Lv W, Du H D, Zhai D Y, Su F Y, Yang Q H, Kang F Y. J. Power Sources, 2012, 202, 253.
[58] 黄东海(Huang D H),刘建生(Liu J S),周邵云(Zhou S Y). 电池(Battery Bimonthly), 2014, 44(2): 80.

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[8] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[9] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[10] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[11] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[12] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[13] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[14] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[15] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.