中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (10): 1701-1711 DOI: 10.7536/PC140705 Previous Articles   Next Articles

• Review •

Squaramide Derivatives and Their Applications in Ion Recognition

Qian Xiaohong1,2, Jin Can2,3, Zhang Xiaoning2, Jiang Yan*1, Lin Chen*2, Wang Leyong2   

  1. 1. Jiangsu Provincial Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China;
    2. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093;
    3. Jiangsu Provincial Key Laboratory of Biomass Energy and Materials, National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by Jiangsu Provincial Key Laboratory of Fine Petrochemical Engineering (No. KF1102), the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Natural Science Foundation of Jiangsu Province (No. BK2011551) and the National Natural Science Foundation of China (No. 21302092)

PDF ( 2163 ) Cited
Export

EndNote

Ris

BibTeX

The squaramide motif with the rigid four-member ring structure that shows the aromaticity is a kind of important and ideal hydrogen bond donor/receptor unit, which can bond to many guest molecules as a double-hydrogen-bond receptor and donor. The squaramide derivatives are easy to be functionalized, which provides the convenient way for the design of the novel ion receptors. In this review, we summarize the structures of squaramide derivatives, synthetic methods, and their recent research progress in the anion, cation, and zwitterionic guest recognition, as well as in the organocatalysis. Finally, the prospects of squaramide derivatives in the future are described.

Contents
1 Introduction
2 Responsive mechanism of responsive photonic crystals
3 Device structure of electrically responsive photonic crystals
3.1 Conductive substrate and electrolyte
3.2 Opal and inverse opal photonic crystal electroactive materials
4 Classification of electrically responsive photonic crystals
4.1 Liquid crystal-based electrically responsive photonic crystals
4.2 Polyelectrolyte hydrogel-based electrically responsive photonic crystals
4.3 Organometallic polymer gel-based electrically responsive photonic crystals
4.4 Conductive polymer-based electrically responsive photonic crystals
4.5 Core-shell electrically responsive photonic crystals
5 Application of electrically responsive photonic crystals
6 Existing problems and outlook

CLC Number: 

[1] Amendola V, Fabbrizzi L, Mosca L. Chem. Soc. Rev., 2010, 39(10): 3889.
[2] Li A F, Wang J H, Wang F, Jiang Y B. Chem. Soc. Rev., 2010, 39(10): 3729.
[3] Maahs G, Hegenber P. Angew. Chem. Int. Ed., 1966, 5(10): 888.
[4] Tomas S, Rotger M C, Gonzalez J F, Deya P M, Ballester P, Costa A. Tetrahedron Lett., 1995, 36(14): 2523.
[5] Malerich J P, Hagihara K, Rawal V H. J. Am. Chem. Soc., 2008, 130(44): 14416.
[6] Aleman J, Parra A, Jiang H, Jorgensen K A. Chem. Eur. J., 2011, 17(25): 6890.
[7] Quiñonero D, Frontera A, Ballester P, Deyà P M. Tetrahedron Lett., 2000, 41(12): 2001.
[8] Tomàs S, Prohens R, Vega M, Rotger M C, Deyà P M, Ballester P, Costa A. J. Org. Chem., 1996, 61(26): 9394.
[9] Storer R I, Aciro C, Jones L H. Chem. Soc. Rev., 2011, 40(5): 2330.
[10] Ni X, Li X, Wang Z, Cheng J P. Org. Lett., 2014, 16(6): 1786.
[11] Yang W, Du D M. Org. Lett., 2010, 12(23): 5450.
[12] Wurm F R, Klok H A. Chem. Soc. Rev., 2013, 42(21): 8220.
[13] Schmidt A H. Synthesis, 1980: 961.
[14] Rostami A, Colin A, Li X Y, Chudzinski M G, Lough A J, Taylor M S. J. Org. Chem., 2010, 75(12): 3983.
[15] Tietze L F, Arlt M, Beller M, Glusenkamp K H, Jahde E, Rajewsky M F. Chem. Ber., 1991, 124(5): 1215.
[16] Xu Z, Singh N J, Lim J, Pan J, Kim H N, Park S, Kim K S, Yoon J. J. Am. Chem. Soc., 2009, 131(42): 15528.
[17] Li S, Jia C, Wu B, Luo Q, Huang X, Yang Z, Li Q S, Yang X J. Angew. Chem. Int. Ed., 2011, 50(25): 5721.
[18] Prohens R, Martorell G, Ballester P, Costa A. Chem. Commun., 2001, (16): 1456.
[19] Frontera A, Morey J, Oliver A, Piña M N, Quiñonero D, Costa A, Ballester P, Deyà P M, Anslyn E V. J. Org. Chem., 2006, 71(19): 7185.
[20] Ramalingam V, Domaradzki M E, Jang S, Muthyala R S. Org. Lett., 2008, 10(15): 3315.
[21] Al-Sayah M H, Branda N R. Thermochim. Acta, 2010, 503: 28.
[22] Amendola V, Bergamaschi G, Boiocchi M, Fabbrizzi L, Milani M. Chem. Eur. J., 2010, 16(14): 4368.
[23] Rostami A, Wei C J, Guérin G, Taylor M S. Angew. Chem. Int. Ed., 2011, 50(9): 2059.
[24] Jin C, Zhang M, Deng C, Guan Y, Gong J, Zhu D, Pan Y, Jiang J, Wang L. Tetrahedron Lett., 2013, 54(8): 796.
[25] Gaeta C, Talotta C, Della Sala P, Margarucci L, Casapullo A, Neri P. J. Org. Chem., 2014, 79(8): 3704.
[26] Jin C, Zhang M, Wu L, Guan Y, Pan Y, Jiang J, Lin C, Wang L. Chem. Commun., 2013, 49(20): 2025.
[27] Elmes R B, Turner P, Jolliffe K A. Org. Lett., 2013, 15(22): 5638.
[28] Davis J T, Gale P A, Okunola O A, Prados P, Iglesias-Sanchez J C, Torroba T, Quesada R. Nat. Chem., 2009, 1(2): 138.
[29] Busschaert N, Wenzel M, Light M E, Iglesias-Hernandez P, Perez-Tomas R, Gale P A. J. Am. Chem. Soc., 2011, 133(35): 14136.
[30] Busschaert N, Kirby I L, Young S, Coles S J, Horton P N, Light M E, Gale P A. Angew. Chem. Int. Ed., 2012, 51(18): 4426.
[31] Lim N C, Morton M D, Jenkins H A, Brückner C. J. Org. Chem., 2003, 68(24): 9233.
[32] Onaran M B, Comeau A B, Seto C T. J. Org. Chem., 2005, 70(26): 10792.
[33] Sanna E, Martinez L, Rotger C, Blasco S, Gonzalez J, Garcia-Espana E, Costa A. Org. Lett., 2010, 12(17): 3840.
[34] Ni M, Guan Y, Wu L, Deng C, Hu X, Jiang J, Lin C, Wang L. Tetrahedron Lett., 2012, 53(47): 6409.
[35] 魏梅莹(Wei M Y), 李少光(Li S G), 贾传东(Jia C D), 吴彪(Wu B). 高等学校化学学报(Chem. Res. Chin. Univ.), 2011, 32(9): 1939.
[36] Frontera A, Orell M, Garau C, Quiñonero D, Molins E, Mata I, Morey J. Org. Lett., 2005, 7(8): 1437.
[37] Ambrosi G, Formica M, Fusi V, Giorgi L, Macedi E, Micheloni M, Paoli P, Pontellini R, Rossi P. Chem. Eur. J., 2011, 17(5): 1670.
[38] Lopez C, Sanna E, Carreras L, Vega M, Rotger C, Costa A. Chem. Asian J., 2013, 8: 84.
[39] Albrecht T, Dickmeiss G, Acosta C F, Rodríguez-Escrich C, Davis R L, Jørgensen K A. J. Am. Chem. Soc., 2012, 134: 2543.
[40] Su Y, Ling J B, Zhang S, Xu P F. J. Org. Chem., 2013, 78: 11053.
[41] Ling J B, Su Y, Zhu H L, Wang G Y, Xu P F. Org. Lett., 2012, 14: 1090.
[42] Yang W, Du D M. Org. Lett., 2010, 12: 5450.
[43] Zhao B L, Du D M. RSC Advances, 2014, 4: 27346.
[44] Zhao B L, Du D M. Org. Biomol. Chem., 2014, 12: 1585.

[1] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[2] Jie Yu, Liu-Zhu Gong. Discovery and Typical Advances of Chiral Amino Amide Catalysts [J]. Progress in Chemistry, 2020, 32(11): 1729-1744.
[3] Qiang Pei, Aixiang Ding. The Design and Application of Quadruple Hydrogen Bonded Systems [J]. Progress in Chemistry, 2019, 31(2/3): 258-274.
[4] Yawen Li, Wantong Ao, Huilin Jin, Liping Cao. Aggregation-Induced Emission of Tetraphenylethene Derivatives with Macrocycles via Host-Guest Interactions [J]. Progress in Chemistry, 2019, 31(1): 121-134.
[5] Chuang Yao, Xi Zhang, Yongli Huang, Lei Li, Zengsheng Ma, Changqing Sun. Perspective: Structures and Properties of Liquid Water [J]. Progress in Chemistry, 2018, 30(8): 1242-1256.
[6] Fanfan Du, Ying Zheng, Guorong Shan, Yongzhong Bao, Suyun Jie*, Pengju Pan*. Hydrogen Bonding-Based Non-Metallic Organocatalysts for Ring-Opening Polymerization of Lactones [J]. Progress in Chemistry, 2018, 30(6): 710-718.
[7] Xiang Wang*. Macrocyclic and Supramolecular Chemistry: From Heteracalixaromatics to Coronarenes——In Memory of Professor Zhi-Tang Huang [J]. Progress in Chemistry, 2018, 30(5): 463-475.
[8] Yuping Tang, Yanmei He, Yu Feng, Qinghua Fan. Asymmetric Supramolecular Catalysis Based on Macrocyclic Host Molecules [J]. Progress in Chemistry, 2018, 30(5): 476-490.
[9] Dong Yunhong, Cao Liping. Functionalization of Cucurbit uril [J]. Progress in Chemistry, 2016, 28(7): 1039-1053.
[10] Wu Hongwei, Chen Yayun, Rao Caihui, Liu Chuanxiang*. Anion Receptors Based on CH Donor Group [J]. Progress in Chemistry, 2016, 28(10): 1501-1514.
[11] Xia Mengchan, Yang Yingwei. Organic Functional Materials Based on Pillarenes [J]. Progress in Chemistry, 2015, 27(6): 655-665.
[12] Li Minrui, Guo Yongliang, Yang Baoping, Guo Junhong, Cui Jinfeng. Electrochemical Analyses of Anion Recognition Based on Urea Derivatives [J]. Progress in Chemistry, 2015, 27(5): 559-570.
[13] Xu Guohe, Li Jie, Deng Jinni, Yin Lv, Zheng Zhaohui, Ding Xiaobin. Molecular Shuttles Based on Host-Guest Recognition Driven by External-Stimuli [J]. Progress in Chemistry, 2015, 27(12): 1732-1742.
[14] Ma Mingfang, Xing Pengyao, Li Shangyang, Chu Xiaoxiao, Wang Bo, Hao Aiyou. Advances of Host-Guest Supramolecular Vesicles and Their Properties in Drug Delivery [J]. Progress in Chemistry, 2014, 26(08): 1317-1328.
[15] Yang Yong, Dou Dandan. Triply and Quadruply Hydrogen Bonded Systems:Design, Structure and Application [J]. Progress in Chemistry, 2014, 26(05): 706-726.