中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (11): 1811-1820 DOI: 10.7536/PC140703 Previous Articles   Next Articles

• Review •

Crystalline Micelles of Block Copolymers

Yang Jiexin, Liu Lei, Xu Junting*   

  1. Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21274130)

PDF ( 1762 ) Cited
Export

EndNote

Ris

BibTeX

Recently the crystallization-driven self-assembly of block copolymers into semicrystalline micelles in the selective solvent has been paid increasing attention due to the good controllability. In this paper we first review some factors controlling the morphology and size of the semicrystalline micelles of block copolymers, including solvent quality, structure of block copolymers, and crystallization temperature. The living growth of semicrystalline micelles with time and formation of "block co-micelles" using micelles as building blocks are also introduced. Finally, currently existing problems and outlook in this field are discussed.

Contents
1 Introduction
2 Morphologies of block copolymer crystalline micelles
2.1 Effect of chain structure of block copolymer
2.2 Effect of solvent quality
2.3 Effect of crystallization temperature
3 Living growth of block copolymer crystalline micelles
4 Block co-micelles
5 Conclusion and outlook

CLC Number: 

[1] He W N, Xu J T. Prog. Polym. Sci., 2012, 37: 1350.
[2] Yu Y S, Eisenberg A. J. Am. Chem. Soc., 1997, 119: 8383.
[3] Zhang L F, Eisenberg A. Polym. Adv. Technol., 1998, 9: 677.
[4] Zhulina E B, Adam M, LaRue I, Sheiko S S, Rubinstein M. Macromolecules, 2005, 38: 5330.
[5] Larue I, Adam M, Zhulina E B, Rubinstein M, Pitsikalis M, Hadjichristidis N, Ivanov D A, Gearba R I, Anokhin D V, Sheiko S S. Macromolecules, 2008, 41: 6555.
[6] Vilgis T, Halperin A. Macromolecules, 1991, 24: 2090.
[7] Wang J, Zhu W, Peng B, Chen Y M. Polymer, 2013, 54: 6760.
[8] Makino A, Hara E, Hara I, Ozeki E, Kimura S. Langmuir, 2014, 30: 669.
[9] Du Z X, Xu J T, Fan Z Q. Macromolecules, 2007, 40: 7633.
[10] Xu J T, Fairclough J P A, Mai S M, Ryan A J. J. Mater. Chem., 2003, 13: 2740.
[11] Xu J T, Jin W, Liang G D, Fan Z Q. Polymer, 2005, 46: 1709.
[12] Kamps A C, Fryd M, Park S J. ACS Nano, 2012, 6: 2844.
[13] Yin L G, Hillmyer M A. Macromolecules, 2011, 44: 3021.
[14] Wang W, Liu R, Li Z, Meng C, Wu Q, Zhu F. Macromol. Chem. Phys., 2010, 211: 1452.
[15] Zhao Y, Shi X B, Gao H Y, Zhang L, Zhu F M, Wu Q. J. Mater. Chem., 2012, 22: 5737.
[16] Liu R, Li Z Y, Mai B Y, Wu Q, Liang G D, Gao H Y, Zhu F M. J. Polym. Res., 2013, 20.
[17] Cao L, Manners I, Winnik M A. Macromolecules, 2002, 35: 8258.
[18] Mihut A M, Crassous J J, Schmalz H, Drechsler M, Ballauff M. Soft Matter, 2012, 8: 3163.
[19] Yin L G, Lodge T P, Hillmyer M A. Macromolecules, 2012, 45: 9460.
[20] Li T, Wang W J, Liu R, Liang W H, Zhao G F, Li Z Y, Wu Q, Zhu F M. Macromolecules, 2009, 42: 3804.
[21] Mai B Y, Li Z Y, Liu R, Feng S, Wu Q, Liang G D, Gao H Y, Zhu F M. J. Polym. Res., 2013, 20.
[22] Li Z Y, Liu R, Mai B Y, Feng S, Wu Q, Liang G D, Gao H Y, Zhu F M. Polym. Chem., 2013, 4: 954.
[23] Chen S C, Wu G, Shi J, Wang Y Z. Chem. Commun., 2011, 47: 4198.
[24] Chen S C, Li L L, Wang H, Wu G, Wang Y Z. Polym Chem, 2012, 3: 1231.
[25] Sun L, Petzetakis N, Pitto-Barry A, Schiller T L, Kirby N, Keddie D J, Boyd B J, O'Reilly R K, Dove A P. Macromolecules, 2013, 46: 9074.
[26] Pitto-Barry A, Kirby N, Dove A P, O'Reilly R K. Polym. Chem., 2014, 5: 1427.
[27] Gödt T, Schacher F H, McGrath N, Winnik M A, Manners I. Macromolecules, 2011, 44: 3777.
[28] Molev G, Lu Y, Kim K S, Majdalani I C, Guerin G, Petrov S, Walker G, Manners I, Winnik M A. Macromolecules, 2014, 47: 2604.
[29] Wang X S, Winnik M A, Manners I. Macromolecules, 2002, 35: 9146.
[30] Schmalz H, Schmelz J, Drechsler M, Yuan J, Walther A, Schweimer K, Mihut A M. Macromolecules, 2008, 41: 3235.
[31] Petzetakis N, Walker D, Dove A P, O'Reilly R K. Soft Matter, 2012, 8: 7408.
[32] Massey J A, Temple K, Cao L, Rharbi Y, Raez J, Winnik M A, Manners I. J. Am. Chem. Soc., 2000, 122: 11577.
[33] Glavas L, Olsen P, Odelius K, Albertsson A C. Biomacromolecules, 2013, 14: 4150.
[34] Rajagopal K, Mahmud A, Christian D A, Pajerowski J D, Brown A E X, Loverde S M, Discher D E. Macromolecules, 2010, 43: 9736.
[35] Schmelz J, Karg M, Hellweg T, Schmalz H. ACS Nano, 2011, 5: 9523.
[36] Fu J, Luan B, Yu X, Cong Y, Li J, Pan C Y, Han Y C, Yang Y M, Li B Y. Macromolecules, 2004, 37: 976.
[37] Huang W H, Luo C X, Zhang J L, Yu K, Han Y C. Macromolecules, 2007, 40: 8022.
[38] Wang H, Winnik M A, Manners I. Macromolecules, 2007, 40: 3784.
[39] Wang X S, Liu K, Arsenault A C, Rider D A, Ozin G A, Winnik M A, Manners I. J. Am. Chem. Soc., 2007, 129: 5630.
[40] Park S J, Kang S G, Fryd M, Saven J G, Park S J. J. Am. Chem. Soc., 2010, 132: 9931.
[41] Su M, Huang H Y, Ma X J, Wang Q, Su Z H. Macromol. Rapid Commun., 2013, 34: 1067.
[42] Li Z Y, Liu R, Mai B Y, Wang W J, Wu Q, Liang G D, Gao H Y, Zhu F M. Polymer, 2013, 54: 1663.
[43] He W N, Xu J T, Du B Y, Fan Z Q, Wang X. Macromol. Chem. Phys., 2010, 211: 1909.
[44] Yang J X, He W N, Xu J T, Du B Y, Fan Z Q. Chin. J. Polym. Sci., 2014, 32: 1128.
[45] He W N, Xu J T, Du B Y, Fan Z Q, Sun F L. Macromol. Chem. Phys., 2012, 213: 952.
[46] Du Z X, Xu J T, Fan Z Q. Macromol. Rapid Commun., 2008, 29: 467.
[47] Raez J, Tomba J P, Manners I, Winnik M A. J. Am. Chem. Soc., 2003, 125: 9546.
[48] Mihut A M, Drechsler M, Moeller M, Ballauff M. Macromol. Rapid Commun., 2010, 31: 449.
[49] Mihut A M, Chiche A, Drechsler M, Schmalz H, Di Cola E, Krausch G, Ballauff M. Soft Matter, 2009, 5: 208.
[50] Mihut A M, Crassous J J, Schmalz H, Ballauff M. Colloid Polym. Sci., 2010, 288: 573.
[51] Schmelz J, Schacher F H, Schmalz H. Soft Matter, 2013, 9: 2101.
[52] Geng Y, Dalhaimer P, Cai S S, Tsai R, Tewari M, Minko T, Discher D E. Nat. Nanotechnol., 2007, 2: 249.
[53] Gilroy J B, Gödt T, Whittell G R, Chabanne L, Mitchels J M, Richardson R M, Winnik M A, Manners I. Nat. Chem., 2010, 2: 566.
[54] McGrath N, Schacher F H, Qiu H B, Mann S, Winnik M A, Manners I. Polym. Chem., 2014, 5: 1923.
[55] Patra S K, Ahmed R, Whittell G R, Lunn D J, Dunphy E L, Winnik M A, Manners I. J. Am. Chem. Soc., 2011, 133: 8842.
[56] Gwyther J, Gilroy J B, Rupar P A, Lunn D J, Kynaston E, Patra S K, Whittell G R, Winnik M A, Manners I. Chem. Eur. J., 2013, 19: 9186.
[57] Qian J S, Guerin G, Cambridge G, Manners I, Winnik M A. Macromol. Rapid Commun., 2010, 31: 928.
[58] Wang Y S, Zou S, Kim K T, Manners I, Winnik M A. Chem. Eur. J., 2008, 14: 8624.
[59] Qi F, Guerin G, Cambridge G, Xu W, Manners I, Winnik M A. Macromolecules, 2011, 44: 6136.
[60] Qian J S, Lu Y J, Cambridge G, Guerin G, Manners I, Winnik M A. Macromolecules, 2012, 45: 8363.
[61] Qian J S, Lu Y J, Chia A, Zhang M, Rupar P A, Gunari N, Walker G C, Cambridge G, He F, Guerin G, Manners I, Winnik M A. ACS Nano, 2013, 7: 3754.
[62] Qian J, Guerin G, Lu Y, Cambridge G, Manners I, Winnik M A. Angew. Chem. Int. Ed., 2011, 50: 1622.
[63] Petzetakis N, Dove A P, O'Reilly R K. Chem. Sci., 2011, 2: 955.
[64] He W N, Zhou B, Xu J T, Du B Y, Fan Z Q. Macromolecules, 2012, 45: 9768.
[65] Yusoff S F M, Hsiao M S, Schacher F H, Winnik M A, Manners I. Macromolecules, 2012, 45: 3883.
[66] Hsiao M S, Yusoff S F M, Winnik M A, Manners I. Macromolecules, 2014, 47: 2361.
[67] Wang X S, Guerin G, Wang H, Wang Y S, Manners I, Winnik M A. Science, 2007, 317: 644.
[68] Gödt T, Ieong N S, Cambridge G, Winnik M A, Manners I. Nat. Mater., 2009, 8: 144.
[69] He F, Gödt T, Manners I, Winnik M A. J. Am. Chem. Soc., 2011, 133: 9095.
[70] Hudson Z M, Lunn D J, Winnik M A, Manners I. Nat. Commun., 2014, 5: 3372
[71] Yusoff S F M, Gilroy J B, Cambridge G, Winnik M A, Manners I. J. Am. Chem. Soc., 2011, 133: 11220.
[72] Soto A P, Gilroy J B, Winnik M A, Manners I. Angew. Chem. Int. Ed., 2010, 49: 8220.
[73] Qiu H, Cambridge G, Winnik M A, Manners I. J. Am. Chem. Soc., 2013, 135: 12180.
[74] Qiu H, Du V A, Winnik M A, Manners I. J. Am. Chem. Soc., 2013, 135: 17739.
[75] Schacher F H, Bellas V, Winnik M A, Manners I. Soft Matter, 2013, 9: 8569.
[76] Schmelz J, Schedl A E, Steinlein C, Manners I, Schmalz H. J. Am. Chem. Soc., 2012, 134: 14217.
[77] Qian J S, Li X Y, Lunn D J, Gwyther J, Hudson Z M, Kynaston E, Rupar P A, Winnik M A, Manners I. J. Am. Chem. Soc., 2014, 136: 4121.
[78] Qiu H, Russo G, Rupar P A, Chabanne L, Winnik M A, Manners I. Angew. Chem. Int. Ed., 2012, 51: 11882.
[79] Rupar P A, Chabanne L, Winnik M A, Manners I. Science, 2012, 337: 559.
[80] Rizis G, van de Ven T G M, Eisenberg A. Soft Matter, 2014, 10: 2825.
[81] Wang H, Lin W J, Fritz K P, Scholes G D, Winnik M A, Manners I. J. Am. Chem. Soc., 2007, 129: 12924.
[82] He F, Gödt T, Jones M, Scholes G D, Manners I, Winnik M A. Macromolecules, 2009, 42: 7953.
[83] Wang H, Patil A J, Liu K, Petrov S, Mann S, Winnik M A, Manners I. Adv. Mater., 2009, 21: 1805.

[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[4] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[5] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[6] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[7] Minqian Luo, Weili Heng, Juan Dai, Yuanfeng Wei, Yuan Gao, Jianjun Zhang. Crystallization of Amorphous Drugs and Inhibiting Strategies [J]. Progress in Chemistry, 2021, 33(11): 2116-2127.
[8] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[9] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[10] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[11] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[12] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[13] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[14] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[15] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
Viewed
Full text


Abstract

Crystalline Micelles of Block Copolymers