中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (12): 1914-1923 DOI: 10.7536/PC140647 Previous Articles   Next Articles

• Review •

Effects of Different Doping Sites on the Structure and Performance of Li4Ti5O12 Material

Huang Zhao1, Wang Dan2, Zhang Chunming*2, He Dannong*1,2   

  1. 1. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. National Engineering Research Center for Nanotechnology, Shanghai 200241, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the Shanghai Rising Star Program (No. 14QB1402900), the National Natural Science Foundation of China (No. 21171116) and the International Science & Technology Cooperation Program of China (No. 2012DFG11660)

PDF ( 1307 ) Cited
Export

EndNote

Ris

BibTeX

Li4Ti5O12 has the advantages of resource, performance, and so on. Recently, Li4Ti5O12 anode material is becoming an important research direction in the field of energy storage and power battery. In this review, the effects of doping ions with the different doping sites in the crystal lattice and its intrinsic properties on the structure and performance of Li4Ti5O12 were discussed. Substitution of doping ions for Li ions on the tetrahedral 8a sites would lower the Li-ion conductivity. Substitution of doping ions for Li ions on the octahedral 16d sites may "correct" distribution of alkali metal ions. Substitution of doping ions for Ti ions on the octahedral 16d sites would affect structural stability of Li4Ti5O12. Substitution of doping ions for O ions on the octahedral 32e sites would affect the conductivity. In certain conditions, if the valence state of doping ions is higher than the substituted ions, the electronic conductivity of Li4Ti5O12 could be improved. Doping elements with different energy band structures and redox behaviors affect the electrochemical reaction process of Li4Ti5O12. The different ionic radius and the number allowed to enter the lattice of doping ions would change the Li4Ti5O12 lattice constant and microstructure morphology.

Contents
1 Introduction
2 Structure properties of Li4Ti5O12
3 Doping of Li4Ti5O12
3.1 Position of dopants
3.2 Properties of dopants
3.3 Atmosphere of doping
4 Latest developments
5 Conclusion and outlook

CLC Number: 

[1] Goodenough J B, Kim Y. Chem. Mater., 2010, 22(3): 587.
[2] 唐致远(Tang Z Y),高飞(Gao F),韩彬(Han B). 化工进展(Chemical Industry and Engineering Progress), 2006, 25(2): 159.
[3] Armand M, Tarascon J M. Nature, 2008, 451: 652.
[4] Ohzuku T, Ueda A, Yamamoto N. J. Electrochem. Soc., 1995, 142: 1431.
[5] Birke P, Chu W F, Weppner W. Solid State Ionics, 1997, 91: 1.
[6] Panero S, Reale P, Ronci F, Albertini V R, Scrosati B. Ionics, 2000, 6: 461.
[7] Ferg E, Gummow R J, Kock A. J. Electrochem. Soc., 1994, 141: L147.
[8] 陈方(Chen F), 梁海潮(Liang H C), 李仁贵(Li R G), 刘力(Liu L), 邓正华(Deng Z H). 无机材料学报(Journal of Inorganic Materials), 2005, 20(3): 537.
[9] 王辰云(Wang C Y), 华宁(Hua N), 康雪雅(Kang X Y), 韩英(Han Y). 电子元件与材料(Electronic Components and Materials), 2009, 28(12): 80.
[10] 杨立(Yang L),陈继章(Chen J Z),唐宇峰(Tang Y F),房少华(Fang S H). 化学进展(Progress in Chemistry), 2011, 23(2/3): 310.
[11] Huang Z, Wang D, Lin Y, Wu X Y, Yan P, Zhang C M, He D N. J. Power Sources, 2014, 266: 60.
[12] Song H, Jeong T G, Moon Y H, Chun H H, Chung K Y, Kim H S, Cho B W, Kim Y T. Sci. Rep., 2014, 4: 4350.
[13] Li X, Lin H C, Cui W J, Xiao Q, Zhao J B. ACS Appl. Mater. Inter., 2014, 6(10): 7895.
[14] Cheng L, Yan J, Zhu G N, Luo J Y, Wang C X, Xia Y Y. J. Mater. Chem., 2010, 20(3):595.
[15] Gao J, Ying J, Jiang C, Wan C. J. Power Sources, 2007, 166(1): 255.
[16] Yang L, Gao L. J. Alloy. Compd., 2009, 485(1/2): 93.
[17] Jung H G, Myung S T, Yoon C S, Son S B, Oh K H, Amine K, Scrosati B, Sun Y K. Energ. Environ. Sci., 2011, 4(4): 1345.
[18] Zhao L, Hu Y S, Li H, Wang Z, Chen L. Adv. Mater., 2011, 23(11): 1385.
[19] Li H, Shen L, Wang J, Ding B, Nie P, Xu G, Wang X Y, Zhang X G. ChemPlusChem, 2014, 79(1): 128.
[20] Nugroho A, Chung K Y, Kim J. J. Phys. Chem. C, 2014, 118(1): 183.
[21] Zhang Q Y, Li X. Int. J. Electrochem. Sci., 2013, 8: 6449.
[22] 冯欣(Feng X), 韩恩山(Han E S), 朱令之(Zhu L Z), 李玲(Li L). 电源技术(Chinese Journal of Power Sources), 2012, 36(3): 317.
[23] 吕岩(Lv Y),张浩(Zhang H),曹高萍(Cao G P),王碧燕(Wang B Y). 电池(Battery Bimonthly), 2010, 40(3): 164.
[24] 段文升(Duan W S), 朱继平(Zhu J P), 郭超(Guo C), 徐超(Xu C), 司双(Si S), 徐晓明(Xu X M). 合肥工业大学学报(Journal of Hefei University of Technology), 2009, 32(7): 996.
[25] 田志宏(Tian Z H),赵海雷(Zhao H L),王治峰(Wang Z F),仇卫华(Chou W H). 电池(Battery Bimonthly), 2008, 38(3): 186.
[26] Yi T F, Xie Y, Shu J, Wang Z, Yue C B, Zhu R S, Qiao H B. J. Electrochem. Soc., 2011, 158(3): A266.
[27] Zhang Y Y, Zhang C M, Lin Y, Xiong D B, Wang D, Wu X Y, He D N. J. Power Sources, 2014, 250: 50.
[28] Zhao H, Li Y, Zhu Z, Lin J, Tian Z, Wang R. Electrochim. Acta, 2008, 53(24): 7079.
[29] Zhang X L, Hu G R, Peng Z D. J. Cent. South. Univ., 2013, 20(5): 1151.
[30] Huang Y, Qi Y, Jia D, Wang X, Guo Z, Cho W I. J. Solid State Electrochem., 2011, 16(5): 2011.
[31] Gao J, Jiang C, Wan C. J. Electrochem. Soc., 2010, 157(2): K39.
[32] Tian B, Xiang H, Zhang L, Wang H. J. Solid State Electrochem., 2011, 16(1): 205.
[33] Xiao C W, Ding Y, Zhang J T, Su X Q, Li G R, Gao X P, Shen P W. J. Power Sources, 2014, 248: 323.
[34] Yi T F, Yang S Y, Li X Y, Yao J H, Zhu Y R, Zhu R S. J. Power Sources, 2014, 246: 505.
[35] Gu F. Adv. Mater. Res., 2013, 712/715: 313.
[36] 李星(Li X), 瞿美臻(Qu M Z), 于作龙(Yu Z L). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2010,26(2): 233.
[37] Chen C H, Vaughey J T, Jansen A N, Dees D W, Kahaian A J, Goacher T, Thackeray M M. J. Electrochem. Soc., 2001, 148: A102.
[38] Capsoni D, Bini M, Massarotti V, Mustarelli P, Chiodelli G, Azzoni C B, Mozzati M C, Linati L, Ferrari S. Chem. Mater., 2008, 20: 4291.
[39] Zhuravlev N A, Mukhina N A, Kellerman D G, Gorshkov V S. Bull. Russ. Acad. Sci.: Phys., 2009, 73(11): 1522.
[40] Wang J, Zhao H, Yang Q, Zhang T, Wang J. Ionics, 2012, 19(3): 415.
[41] Zhang Q Y, Li X. Int. J. Electrochem. Sci., 2013, 8: 9734.
[42] Choi B H, Lee D J, Ji M J, Kwon Y J, Park S T. J. Korean Ceram. Soc., 2010, 47(6): 638.
[43] Bai Y J, Gong C, Qi Y X, Lun N, Feng J. J. Mater. Chem.,2012, 22(36): 19054.
[44] Huang S, Wen Z, Gu Z, Zhu X. Electrochim. Acta, 2005, 50(20): 4057.
[45] Hao Y J, Lai Q Y, Lu J Z, Ji X Y. Ionics, 2007, 13(5): 369.
[46] Yi T F, Shu J, Zhu Y R, Zhu X D, Yue C B, Zhou A N, Zhu R S. Electrochim. Acta, 2009, 54(28): 7464.
[47] Kubiak P, Garcia A, Womes M, Aldon L. J. Power Sources, 2003, 119/121: 626.
[48] Yi T F, Xie Y, Wu Q, Liu H, Jiang L, Ye M, Zhu R S. J. Power Sources, 2012, 214: 220.
[49] Xiao L, Zhao Y, Yang Y, Cao Y, Ai X, Yang H. Electrochim. Acta, 2008, 54(2): 545.
[50] Wu D, Cheng Y. Ionics, 2012, 19(3): 395.
[51] Yi T F, Shu J, Zhu Y R, Zhu X D, Zhu R S, Zhou A N. J. Power Sources, 2010, 195(1): 285.
[52] Gu F. Adv. Mater. Res., 2013, 750/752: 1791.
[53] Zhang Q Y, Li X. Int. J. Electrochem. Sci., 2013, 8: 7816.
[54] Li X, Qu M, Yu Z. J. Alloy. Compd., 2009, 487(1/2): L12.
[55] Gu F, Chen G, Wang Z. J. Solid State Electrochem., 2011, 16(1): 375.
[56] Yi T F, Chen B, Shen H Y, Zhu R S, Zhou A N, Qiao H B. J. Alloy. Compd., 2013, 558: 11.
[57] Kim J G, Park M S, Hwang S M, Heo Y U, Liao T, Sun Z Q, Park J H, Kim K J, Jeong G J, Kim Y J, Kim J H, Dou S X. ChemSusChem, 2014, 7(5): 1451.
[58] Nithya V D, Sharmila S, Vediappan K, Lee C W, Vasylechko L, Selvan R K. J. Appl. Electrochem., 2014, 44(5): 647.
[59] 唐致远(Tang Z Y), 阳晓霞(Yang X X), 陈玉红(Chen Y H), 李昌盛(Li C S), 焦延峰(Jiao Y F),贺艳兵(He Y B). 精细化工(Fine Chemicals), 2007, 24(3): 273.
[60] Wolfenstine J, Allen J L. J. Power Sources, 2008, 180(1): 582.
[61] Tian B, Xiang H, Zhang L, Li Z, Wang H. Electrochim. Acta, 2010, 55(19): 5453.
[62] Shi L, Hu X, Huang Y. J. Nanopart. Res., 2014, 16(4): 2331.
[63] 武洪彬(Wu H B), 陈猛(Chen M), 康亮(Kang L), 周锴(Zhou K), 王文刚(Wang W G), 张晶(Zhang J). 电池工业(Chinese Battery Industry), 2010, 15(5):304.
[64] 熊训辉(Xiong X H), 王志兴(Wang Z X), 伍凌(Wu L), 李新海(Li H X), 吴飞翔(Wu F X), 郭华军(Guo H J), 彭文杰(Peng W J). 中国有色金属学报(The Chinese Journal of Nonferrous Metals), 2011,21(9): 2146.
[65] Yi T F, Xie Y, Jiang L J, Shu J, Yue C B, Zhou A N, Ye M F. RSC Adv., 2012, 2(8): 3541.
[66] Wang W, Wang H, Wang S, Hu Y, Tian Q, Jiao S. J. Power Sources, 2013, 228: 244.
[67] Ma Y, Ding B, Ji G, Lee J Y. ACS Nano, 2013, 7: 10870.
[68] Du G, Sharma N, Peterson V K, Kimpton J A, Jia D, Guo Z. Adv. Funct. Mater., 2011, 21(20): 3990.
[69] Liu D, Ouyang C, Shu J, Jiang J, Wang Z, Chen L. Phys. Status Solidi B, 2006, 243(8): 1835.
[70] Robertson A D, Trevino L, Tukamot H. J. Power Sources, 1999, 81/82: 352.
[71] Huang S, Wen Z, Zhu X, Lin Z. J. Power Sources, 2007, 165(1): 408.
[72] Huang S, Wen Z, Zhu X, Lin Z. J. Electrochem. Soc., 2005, 152(1): A186.
[73] Wu H, Chang S, Liu X, Yu L, Wang G, Cao D, Zhang Y, Yang B, She P. Solid State Ionics, 2013, 232: 13.
[74] Huang S, Wen Z, Zhu X, Gu Z. Electrochem. Commun., 2004, 6(11): 1093.
[75] Karhunen T, Lähde A, Leskinen J, Büchel R, Waser O, Tapper U. ISRN Nanotechnol., 2011, 2011: 1.
[76] Qiu C, Yuan Z, Liu L, Ye N, Liu J. J. Solid. State. Electrochem., 2012, 17(3): 841.
[77] Wang D, Zhang C, Zhang Y, Wang J, He D. Ceram. Int., 2013, 39(5): 5145.
[78] Jeong E D, Han H J, Jung O S, Ha M G, Doh C H, Hwang M J, Yang H S, Hong K S. Mater. Res. Bull., 2012, 47(10): 2847.
[79] Capsoni D, Bini M, Massarotti V, Mustarelli P, Ferrari S, Chiodeli G, Mozzati M C, Galinetto P. J. Phys. Chem. C, 2009, 196(113): 19664.
[80] Shenouda A Y, Murali K R. J. Power Sources, 2008, 176(1): 332.
[81] Qiu C, Yuan Z, Liu L, Cheng S, Liu J. Chinese. J. Chem., 2013, 31: 819.
[82] Park J S, Baek S H, Park Y, Kim J H. J. Korean Phys. Soc., 2014, 64(10): 1545.

[1] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[2] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[3] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[4] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[5] Xiujun Cao, Lei Zhang, Yuanxin Zhu, Xin Zhang, Chaonan Lv, Changmin Hou. Design and Synthesis of Sillenite-Based Micro/Nanomaterials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2020, 32(2/3): 262-273.
[6] Liu Xin, Zhao Hailei, Xie Jingying, Lv Pengpeng, Wang Ke, Cui Jiajia. SiOx(0<x≤2) Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(4): 336-348.
[7] Lou Shuaifeng, Cheng Xinqun, Ma Yulin, Du Chunyu, Gao Yunzhi, Yin Geping. Nb-Based Oxides as Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2015, 27(2/3): 297-309.
[8] Liu Xin, Zhao Hailei, Xie Jingying, Wang Ke, Lv Pengpeng, Gao Chunhui. SnS2 Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2014, 26(09): 1586-1595.
[9] Deng Haifu, Nie Ping, Shen Laifa, Luo Haifeng, Zhang Xiaogang. High Voltage Spinel-Structured LiNi0.5Mn1.5O4 as Cathode Materials for Li-Ion Batteries [J]. Progress in Chemistry, 2014, 26(06): 939-949.
[10] Han Fei, Lu Anhui, Li Wencui* . Structure Controlled Carbon-Based Materials for Lithium Ion Battery [J]. Progress in Chemistry, 2012, 24(12): 2443-2456.
[11] Chu Daobao, Li Jian, Yuan Ximei, Li Zilong, Wei Xu, Wan Yong. Tin-Based Alloy Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2012, 24(08): 1466-1476.
[12] Yang Li, Chen Jizhang, Tang Yufeng, Fang Shaohua. Li4Ti5O12 Anode Materials Applied in Lithium Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 310-317.
[13] Tao Zhanliang, Wang Hongbo, Chen Jun. Si-Based Materials as the Anode of Lithium-Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 318-327.
[14] Qiu Weihua, Yan Kun, Lian Fang, Qiao Yafei. Application of Boron-Based Lithium Salt for Li-Ion Battery [J]. Progress in Chemistry, 2011, 23(0203): 357-365.
[15] Zhang Lianqi, Xiao Chengwei, Yang Ruijuan. Ordered/Disordered Rocksalt Structured Li1+xM1-xO2 Cathode Materials for Li-Ion Battery [J]. Progress in Chemistry, 2011, 23(0203): 410-417.