中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (11): 1821-1831 DOI: 10.7536/PC140636 Previous Articles   Next Articles

• Review •

Nanofiber Fabrication Techniques and Its Applicability to Chitosan

Wang Yihan1,2, Wakisaka Minato*2   

  1. 1. School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
    2. Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 8080196, Japan
  • Received: Revised: Online: Published:
PDF ( 2203 ) Cited
Export

EndNote

Ris

BibTeX

Chitosan is a biodegradable and biocompatible polymer with unique properties derived from marine resources, it is expected as important raw material for nanofibers with wide range of applications. Chitosan and its composite nanofibers have been fabricated by traditional spinning processes such like wet spinning or electrospinning, but these processes are complex, using harmful solvent or high voltage with lower safety. In search of more simple and safe nanofiber fabrication method applicable to chitosan, six kinds of novel nanofiber fabrication methods are reviewed, these methods are divided into two major categories of "small~large" approach and "large~small" approach. "Small~large" approach includes variety of spinning processes (such as rotary jet-spinning, handspinning and solution blowing) and two freeze casting processes (simple freeze-drying and jet-rapid freezing), while star burst system as an example of "large~small" approach. Both advantages and disadvantages of each method are compared from the viewpoint of fiber diameter, fiber orientation and the applicability to chitosan. A new innovative idea of combining ultrasonic atomization and freeze casting process for chitosan nanofibers is also provided in this review. Ultrasonic atomization combined with freeze casting method is simple and avoids usage of volatile solvents. Chitosan nanofibers obtained by this innovative method could be applicable to biomedical engineering and food engineering due to both chitosan's characteristics and the safety of fabrication process.

Contents
1 Introduction
2 Spinning nanofiber fabrication methods
2.1 Rotary jet-spinning
2.2 Handspinning
2.3 Solution blowing
3 Freeze casting nanofiber fabrication methods
3.1 Simple freeze-drying
3.2 Jet-rapid freezing
4 Star burst nanofiber fabrication method
5 Conclusion and outlook

CLC Number: 

[1] Kurita K. Mar. Biotechnol., 2006, 8: 203.
[2] Ma B, Xie J W, Jiang J, Shuler F D, Bartlett D E. Nanomedicine, 2013, 8: 1459.
[3] Ranjbar-Mohammadi M, Bahrami S H, Joghataei M T. Mater. Sci. Eng. C, 2013, 33: 4935.
[4] Barikani M, Oliaei E, Seddiqi H, Honarkar H. Iran. Polym. J., 2014, 23: 307.
[5] Watanabe K, Kim B S, Enomoto Y, Kim I S. Macromol. Mater. Eng., 2011, 296: 568.
[6] Liu R F, Xu X L, Zhuang X P, Cheng B W. Carbohydr. Polym., 2014,11: 1116.
[7] Ifuku S, Ikuta A, Egusa M, Kaminaka H, Izawa H, Morimoto M, Saimoto H. Carbohydr. Polym., 2013,98: 1198.
[8] Ifuku S, Shervani Z, Saimoto H. Nanotech. Nanomater., 2013,11: 85.
[9] Qin Y M. Tex. Hor., 1994, 14: 19.
[10] East G C, Qin Y M. J. Appl. Polym. Sci., 1993, 50: 1773.
[11] Liu C X, Bai R B. J. Membr. Sci., 2005, 267: 68.
[12] Shin S R, Park S J, Yoon S G, Lee C K, Shin K M, Gu B K, Shin M K, Kim M S, Kim Y J, Kim S J. Mater. Res. Soc. Symp. Proc., DOI:10.1557/PROC-0915-R01-05.
[13] Chen X. Master Dissertation of Beijing Institute of Clothing Technology, 2008.
[14] Ohkawa K, Yamamoto H. Text. Res. J., 2002, 72: 120.
[15] Li D, Ma J W. Adv. Tex. Tech., 2009, 3: 66.
[16] Shuakat M N, Lin T. J. Nanosci. Nanotechnol., 2014, 14: 1389.
[17] Min B M, Lee S W, Lim J N, You Y, Lee T S, Kang P H, Park W H. Polymer, 2004, 45: 7137.
[18] Duan B, Dong C H, Yuan X Y, Yao K D.J.Biomaterials Sci. Polym. Ed., 2004, 15: 797.DOI:10.1163/156856204774196171.
[19] Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H. Macromol. Rapid Commun., 2004, 25: 1600.
[20] Geng X Y, Kwon O H, Jang J H. Biomaterials, 2005,26: 5427.
[21] Park W H, Jeong L, Yoo D L, Hudsonc S. Polymer, 2004, 45: 7151.
[22] Thomas H, Heine E, Wollseifen R, Cimpeanu C, Mller M. Int. Nonwovens J., 2005,14: 12.
[23] Zhou Y S, Yang D Z, Nie J. J. Appl. Polym. Sci., 2006, 102: 5692.
[24] Li L, Hsieh Y L. Carbohydr. Res., 2006, 341: 374.
[25] Kim S H, Nam Y S, Lee T S, Park W H. Polym. J., 2003, 35: 185.
[26] Min B M, Lee G, Kim S H, Nam Y S, Lee T S, Park W H. Biomaterials, 2004, 25: 1289.
[27] Ignatova M, Starbova K, Markova N, Manolova N, Rashkov I. Carbohydr. Res., 2006, 341: 2098.
[28] Liao H H, Qi R L, Shen M W, Cao X Y, Guo R, Zhang Y Z, Shi X Y. Colloids Surf. B, 2011, 84: 528.
[29] Peesan M, Rujiravanit R, Supaphol P. J. Biomater. Sci. Polym. Ed., 2006, 17: 547.
[30] Seo H, Matsumoto H, Hara S, Minagawa M, Tanioka A, Yako H, Yamagata Y, Inoue K. Polym. J., 2005, 37: 391.
[31] Doshi J, Reneker D H. J. Electrost., 1995, 35: 151.
[32] Badrossamay M R, Mcllwee H A, Goss J A, Parker K K. Nano Lett., 2010, 10: 2257.
[33] Oliveira M S N, Yeh R, McKinley G H J. J. Non-Newtonian Fluid Mech., 2006, 137: 137.
[34] Badrossamay M R, Balachandran K, Capulli A K, Golecki H M, Agarwal A, Goss J A, Kim H, Shin K, Parker K K. Biomaterials, 2014, 35: 3188.
[35] Zhuang X P, Shi L, Jia K F, Cheng B W, Kang W M. J. Membr. Sci., 2013, 429: 66.
[36] Zhuang X P, Yang X C, Shi L, Cheng B W, Guan K T, Kang W M. Carbohydr. Polym., 2012, 90: 982.
[37] Zhang L F, Kopperstad P, West M, Hedin N, Fong H. J. Appl. Polym. Sci., 2009, 114: 3479.
[38] Zhuang X P, Jia K F, Cheng B W, Guan K T, Kang W M, Ren Y L. J. Eng. Fibers Fabr., 2013, 8: 88.
[39] Medeiros E S, Glenn G M, Klamczynski A P, Orts W J, Mattoso L H C. J. Appl. Polym. Sci., 2009, 113: 2322.
[40] Zhuang X P, Shi L, Zhang B, Cheng B W, Kang W M. Macromol. Res., 2013, 21:346.
[41] Sinha-Ray S, Zhang Y, Yarin A L, Davis S C, Pourdeyhimi B. Biomacromolecules, 2011, 12: 2357.
[42] Behrens A M, Casey B J, Sikorski M J, Wu K L, Tutak W, Sandler A D, Kofinas P. ACS Macro Lett., 2014, 3: 249.
[43] Lee D Y, Zhang C Y, Gao H F. Macromol. Chem. Phys., 2014, 215: 669.
[44] Shi Q, An Z, Tsung C K, Liang H, Zheng N, Hawker C J, Stucky G D. Adv. Mater., 2007, 19: 4539.
[45] Gutiérrez M C, Ferrer M L, del Monte F. Chem. Mater., 2008, 20: 634.
[46] Arndt E M, Gawryla M D, Schiraldi D A. J. Mater. Chem., 2007, 17: 3525.
[47] Gawryla M D, Berg O V D, Weder C, Schiraldi D A. J. Mater. Chem., 2009, 19: 2118.
[48] Somlai L S, Bandi S A, Schiraldi D A, Mathias J. AIChE J., 2006, 52: 1162.
[49] Madihally S V, Matthew H W T. Biomaterials, 1999, 20: 1133.
[50] Baker S C, Rohman G R, Southgate J, Cameron N R. Biomaterials, 2009, 30:1321.
[51] Wallace G G, Kane-Maguire L A P. Adv. Mater., 2002, 14: 953.
[52] Spender J, Demers A L, Xie X F, Cline A E, Earle M A, Ellis L D, Neivandt D J. Nano Lett., 2012, 12: 3857.
[53] Gutierrez M C, Ferrer M L, Monte F D. Chem. Mater., 2008, 20: 634.
[54] Thongprachan N, Nakagawa K, Sano N, Charinpanitkul T, Tanthapanichakoon W. Mater. Chem. Phys., 2008, 112:262.
[55] Whang K, Thomas C H, Healy K E. Polymer, 1995, 36: 837.
[56] Swetman L J, Moulton S E, Wallace G G. J. Mater. Chem., 2008, 18: 5417.
[57] Ma H, Gao Y, Li Y, Gong J, Li X, Fan B, Deng Y. J. Phys. Chem. C, 2009, 113: 9047.
[58] Qian L, Zhang H. Green Chem., 2010, 12:1207.
[59] Qian L, Willneff E, Zhang H. Chem. Commun., 2009, 26: 3946.
[60] Cai X, Luan Y, Dong Q, Shao W, Li Z, Zhao Z. Int. J. Pharm., 2011, 419: 240.
[61] Dutta A K, Kawamoto N, Sugino G, Izawa H, Morimoto M, Saimoto H, Ifuku S. Carbohydr. Polym., 2013, 97: 363.
[62] Dutta A K, Yamada K, Izawa H, Morimoto M, Saimoto H, Ifuku S. J. Chitin Chitosan Sci., 2013, 1: 59.DOI:10.1166/jcc.2013.1008
[63] Ifuku S, Yamada K, Morimoto M, Saimoto H. J. Nanomater., 2012, 2012: 1.
[64] Ifuku S, Saimoto H. Nanoscale, 2012, 4: 3308.

[1] Dongdong Zhang, Jingmin Liu, Yaoyao Liu, Meng Dang, Guozhen Fang, Shuo Wang. The Application of Nanoparticles in Drug Delivery [J]. Progress in Chemistry, 2018, 30(12): 1908-1919.
[2] Chunxue Li, Yu Qiao, Xue Lin, Guangbo Che. Preparation of Quantum Dots@Metal-Organic Frameworks and Its Application in the Field of Photocatalytic Degradation [J]. Progress in Chemistry, 2018, 30(9): 1308-1316.
[3] Xiuxiu Ni, He Ding, Jingshuang Zhang, Zhouliangzi Zeng, Peng Bai, Xianghai Guo*. Strategies for the Synthesis of b-Oriented MFI Zeolite Membranes and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 976-988.
[4] Yushan Liu, Wei Li, Peng Wu, Shouxin Liu*. Preparation and Applications of Carbon Quantum Dots Prepared via Hydrothermal Carbonization Method [J]. Progress in Chemistry, 2018, 30(4): 349-364.
[5] Tian Zhao*, Ming Dong, Yi Zhao, Yuejun Liu*. Preparation and Application of Nano-Sized Metal-Organic Frameworks [J]. Progress in Chemistry, 2017, 29(10): 1252-1259.
[6] Yaoyao Li, Jingmin Liu, Guozhen Fang, Dongdong Zhang, Qinghua Wang, Shuo Wang. Biosensor Detection and Imaging Based on Persistence Luminescence Nanoprobe [J]. Progress in Chemistry, 2017, 29(6): 667-682.
[7] Weina Fang, Shuang Lu, Lihua Wang, Chunhai Fan, Huajie Liu. Synthesis and Applications of Triangular Gold Nanoplates [J]. Progress in Chemistry, 2017, 29(5): 459-466.
[8] Yongyin Kang, Zhicheng Song, Peisheng Qiao, Xiangpeng Du, Fei Zhao. Research and Application of Photo-Luminescent Colloidal Quantum Dots [J]. Progress in Chemistry, 2017, 29(5): 467-475.
[9] Longjuan Kong, Hui Li*. Substrate Induced Atomic and Electronic Structures of Borophene, Silicene, and Germanene [J]. Progress in Chemistry, 2017, 29(4): 337-347.
[10] Xianyun Hu, Qingsheng Guo, Yuqian Liu, Qingjiang Sun, Tiehong Meng, Ruguo Zhang. Design Strategies and Applications of Quantum Dots Fluorescent Sensing [J]. Progress in Chemistry, 2017, 29(2/3): 300-317.
[11] Tang Zhijiao, Li Gongke*, Hu Yuling*. Advances in Preparation and Applications in Quantitative Analysis of Nitrogen-Doped Carbon Dots [J]. Progress in Chemistry, 2016, 28(10): 1455-1461.
[12] Du Xin, Zhao Caixia, Huang Hongwei, Wen Yongqiang, Zhang Xueji. Synthesis of Dendrimer-Like Porous Silica Nanoparticles and Their Applications in Advanced Carrier [J]. Progress in Chemistry, 2016, 28(8): 1131-1147.
[13] Zhang He, Zhang Chi, Song Ye. Fabrication of Anodic Titania Nanotube Arrays with Tunable Morphologies [J]. Progress in Chemistry, 2016, 28(6): 773-783.
[14] Wang Jing, Fan Haowen, Zhang He, Chen Qun, Liu Yi, Ma Weihua. Anodizing Process of Titanium and Formation Mechanism of Anodic TiO2 Nanotubes [J]. Progress in Chemistry, 2016, 28(2/3): 284-295.
[15] Gong Dejun, Gao Guanbin, Zhang Mingxi, Sun Taolei. Chiral Gold Nanoclusters: Synthesis, Properties and Applications [J]. Progress in Chemistry, 2016, 28(2/3): 296-307.