中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (10): 1633-1644 DOI: 10.7536/PC140616 Previous Articles   Next Articles

Preparation and Catalytic Application of Task-Specific Ionic Liquid Hybrid Solid-Phase Nano Materials

Li Shanjian*1,2, Feng Lajun1   

  1. 1. School of Materials Science and Technology, Xi'an University of Technology, Xi'an 710048, China;
    2. College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51174160)

PDF ( 734 ) Cited
Export

EndNote

Ris

BibTeX

Ionic liquids, as novel soft functional materials, can serve as green solvent and active center in catalytic reaction. Meanwhile, it can be used as a catalytically functional molecule to decorate other solid nano materials. In this paper, the concept toward task-specific ionic liquid (TSILs) hybrid solid nano materials and new catalytic performance are systematically reviewed from the perspective of design,synthesis and application of heterogeneous catalytic materials. Finally, we summarized state of the art and made an outlook about TSILs hybrid solid nano materials.

Contents
1 Introduction
2 TSILs hybrid silica-based inorganic materials
2.1 Confining TSILs by physical absorption
2.2 Anchoring TSILs by covalent attachment
3 TSILs hybrid magnetic nano materials
4 TSILs hybrid organic polymers
5 TSILs hybrid carbon-based nano materials
6 TSILs hybrid metal-organic frameworks (MOFs) materials
7 Conclusion and outlook

CLC Number: 

[1] Dupont J, de Souza R F, Suarez P A Z. Chem. Rev., 2002, 102: 3667.
[2] Rogers R D, Seddon K R. Science, 2003, 302: 792.
[3] Davis J H. Chem. Lett., 2004, 33: 1072.
[4] Giernoth R. Angew. Chem. Int. Ed., 2010, 49: 2834.
[5] Yue C, Fang D, Liu L, Yi T F. J. Mol. Liq., 2011, 163: 99.
[6] Welton T. Chem. Rev., 1999, 99: 2071.
[7] Plechkova N V, Seddon K R. Chem. Soc. Rev., 2008, 37: 123.
[8] Wang Y, Yang H. J. Am. Chem. Soc., 2005, 127: 5316.
[9] Antonietti M, Kuang D, Smarsly B, Zhou Y. Angew. Chem. Int. Ed., 2004, 43: 4988.
[10] Hapiot P, Lagrost C. Chem. Rev., 2008, 108: 2238.
[11] Olivier-Bourbigou H, Magna L, Morvan D. Appl. Catal. A, 2010, 373: 1.
[12] Zhang Q, Zhang S, Deng Y. Green Chem., 2011, 13: 2619.
[13] Valkenberg M, HölderichW. Green Chem., 2001, 4: 88.
[14] Mehnert C P. Chem. Eur. J., 2005, 11: 50.
[15] Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J. Nature, 1992, 359: 710.
[16] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 279: 548.
[17] Hoffmann F, Cornelius M, Morell J, Fröba M. Angew. Chem. Int. Ed., 2006, 45: 3216.
[18] Dai H. Acc. Chem. Res., 2002, 35: 1035.
[19] Hata K, Futaba D N, Mizuno K, Namai T, Yumura M, Iijima S. Science, 2004, 306: 1362.
[20] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E. Science, 2009, 324: 1312.
[21] Stankovich S, Dikin D A, Dommett G H, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature, 2006, 442: 282.
[22] Deng Y, Qi D, Deng C, Zhang X, Zhao D. J. Am. Chem. Soc., 2008, 130: 28.
[23] Kang Y S, Risbud S, Rabolt J F, Stroeve P. Chem. Mater., 1996, 8: 2209.
[24] Paul D, Robeson L. Polymer, 2008, 49: 3187.
[25] Jancar J, Douglas J, Starr F W, Kumar S, Cassagnau P, Lesser A, Sternstein S S, Buehler M. Polymer, 2010, 51: 3321.
[26] James S L. Chem. Soc. Rev., 2003, 32: 276.
[27] Meek S T, Greathouse J A, Allendorf M D. Adv. Mater., 2011, 23: 249.
[28] Zhou H C, Long J R, Yaghi O M. Chem. Rev., 2012, 112: 673.
[29] Zhuravlev L. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 173: 1.
[30] Iler R K. The Chemistry of Silica, New York: Wiley, 1979.
[31] Valkenberg M, DeCastro C, Hölderich W. Appl. Catal. A, 2001, 215: 185.
[32] DeCastro C, Sauvage E, Valkenberg M, Hölderich W. J. Catal., 2000, 196: 86.
[33] Karimi B, Vafaeezadeh M. Chem. Commun., 2012, 48: 3327.
[34] Zhang Q, Luo J, Wei Y. Green Chem., 2010, 12: 2246.
[35] Yang H, Han X, Li G, Wang Y. Green Chem., 2009, 11: 1184.
[36] Cai C, Wang H, Han J. Appl. Surf. Sci., 2011, 257: 9802.
[37] Jiang N, Jin H, Mo Y H, Prasetyanto E A, Park S E. Micropor. Mesopor. Mater., 2011, 141: 16.
[38] Parvin M N, Jin H, Ansari M B, Oh S S, Park S E. Appl. Catal. A, 2011, 413/414: 205.
[39] Miao J, Wan H, Guan G. Catal. Commun., 2011, 12: 353.
[40] Abu-Reziq R, Wang D, Post M, Alper H. Adv. Syn. Catal., 2007, 349: 2145.
[41] Taher A, Kim J B, Jung J Y, Ahn W S, Jin M J. Synlett, 2009, 2477.
[42] Pourjavadi A, Hosseini S H, Doulabi M, Fakoorpoor S M, Seidi F. ACS Catal., 2012, 2: 1259.
[43] Zhang Q, Su H, Luo J, Wei Y. Green Chem., 2012, 14: 201.
[44] Karimi B, Mansouri F,Vali H. Green Chem., 2014, 16: 2587.
[45] Chen W, Zhang Y, Zhu L, Lan J, Xie R, You J. J. Am. Chem. Soc., 2007, 129: 13879.
[46] Xu Z, Wan H, Miao J, Han M, Yang C, Guan G. J. Mol. Catal. A, 2010, 332: 152.
[47] Kim D W, Chi D Y. Angew. Chem. Int. Ed., 2004, 43: 483.
[48] Kim D W, Hong D J, Jang K S, Chi D Y. Adv. Syn. Catal., 2006, 348: 1719.
[49] Shen Y, Zhang Y, Zhang Q, Niu L, You T, Ivaska A. Chem. Commun., 2005, 4193.
[50] Zhi H, Lü C, Zhang Q, Luo J. Chem. Commun., 2009, 2878.
[51] Su D S, Perathoner S, Centi G. Chem. Rev., 2013, 113: 5782.
[52] Wu B, Hu D, Kuang Y, Liu B, Zhang X, Chen J. Angew. Chem. Int. Ed., 2009, 48: 4751.
[53] Guo S, Dong S, Wang E. Adv. Mater., 2010, 22: 1269.
[54] Park M J, Lee J K, Lee B S, Lee Y W, Choi I S, Lee S G. Chem. Mater., 2006, 18: 1546.
[55] Chun Y S, Shin J Y, Song C E, Lee S G. Chem. Commun., 2008, 942.
[56] Lee J S, Lee T, Song H K, Cho J, Kim B S. Energy. Environ. Sci., 2011, 4: 4148.
[57] Yang M H, Choi B G, Park H, Park T J, Hong W H, Lee S Y. Electroanalysis, 2011, 23: 850.
[58] Li J R, Sculley J, Zhou H C. Chem. Rev., 2011, 112: 869.
[59] Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38: 1450.
[60] Farrusseng D, Aguado S, Pinel C. Angew. Chem., 2009, 48: 7502.
[61] Borfecchia E, Maurelli S, Gianolio D, Groppo E, Chiesa M, Bonino F, Lamberti C. J. Phys. Chem. C, 2012, 116: 19839.
[62] Dhakshinamoorthy A, Alvaro M, Garcia H. Chem. Commun., 2012, 48: 11275.
[63] Chui S S Y, Lo S M F, Charmant J P, Orpen A G, Williams I D. Science, 1999, 283: 1148.
[64] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309: 2040.
[65] Park K S, Ni Z, Côté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Pro. Nat. Aca. Sci., 2006, 103: 10186.
[66] Luo Q X, Ji M, Lu M H, Hao C, Qiu J S, Li Y Q. J. Mater. Chem. A, 2013, 1: 6530.
[67] Khan N A, Hasan Z, Jhung S H. Chem. Eur. J., 2014, 20: 376.
[68] Luo Q X, Song X D, Ji M, Park S E, Hao C, Li Y Q. Appl. Catal. A, 2014, 478: 81.

[1] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[2] Jie Wang, Yaqing Feng, Bao Zhang. MOF-COF Hybrid Frameworks Materials [J]. Progress in Chemistry, 2022, 34(6): 1308-1320.
[3] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[4] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[5] Meirong Kang, Fuxiang Jin, Zhen Li, Heyuan Song, Jing Chen. Research and Application of Supported Ionic Liquids [J]. Progress in Chemistry, 2020, 32(9): 1274-1293.
[6] Chen Hou, Wenqiang Chen, Linhui Fu, Sufeng Zhang, Chen Liang. Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes [J]. Progress in Chemistry, 2020, 32(7): 895-905.
[7] Xinzhi Wang, Hongli Wang, Feng Shi. Alcohol Amination for N-Alkyl Amine Synthesis with Heterogeneous Catalysts [J]. Progress in Chemistry, 2020, 32(2/3): 162-178.
[8] Xingwang Lan, Guoyi Bai. Covalent Organic Framework Catalytic Materials: CO2 Conversion and Utilization [J]. Progress in Chemistry, 2020, 32(10): 1482-1493.
[9] Jiawei Li, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Chemical Fixation of Carbon Dioxide [J]. Progress in Chemistry, 2019, 31(10): 1350-1361.
[10] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[11] Xiao Xiao, Changsheng Chen, Weiqiang Liu, Yeshun Zhang. Structure, Features and Biomedical Applications of Silk Sericin [J]. Progress in Chemistry, 2017, 29(5): 513-523.
[12] Ying Shi, Lei Wen, Minjie Wu, Feng Li. Applications of the Carbon Materials on Lithium Titanium Oxide as Anode for Lithium Ion Batteries [J]. Progress in Chemistry, 2017, 29(1): 149-161.
[13] Hao Rui, Zhang Congyun, Lu Ya, Zhang Dongjie, Hao Yaowu, Liu Yaqing. Preparation and Surface-Enhanced Raman Scattering Effect of Graphene Oxide/(Au/Ag) Hybrid Materials [J]. Progress in Chemistry, 2016, 28(8): 1186-1195.
[14] Fu Xianbiao, Yu Guipeng. Covalent Organic Frameworks Catalysts [J]. Progress in Chemistry, 2016, 28(7): 1006-1015.
[15] Zhang Lingfeng, Hu Zhongpan, Gao Zemin, Liu Yalu, Yuan Zhongyong. Preparation and Catalytic Application of Ordered Mesoporous Carbon-Based Metal Composite Materials [J]. Progress in Chemistry, 2015, 27(8): 1042-1056.