中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (09): 1596-1608 DOI: 10.7536/PC140514 Previous Articles   Next Articles

• Review •

Development of Mg-Transition Metal Complex as Cathode Materials

Liu Yuping*1,2,3, Xie Jian1, Li Tingting1, Deng Ling1, Chen Changguo1, Zhang Dingfei*2   

  1. 1. College of Chemistry and Engineering, Chongqing University, Chongqing 400044, China;
    2. National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China;
    3. Post-Doctorial Research Station of Materials Engineering, Chongqing University, Chongqing 400044, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Great Theoretic Research Project (No. 2013CB632200), the National Natural Science Foundation of China(No. 21273292) and Chongqing University Central College Fund(No. CQDXWL-2012-026)

PDF ( 2591 ) Cited
Export

EndNote

Ris

BibTeX

High energy density, high capacity, high work voltage, low cost, highly safe rechargeable battery is the future development directions of storage battery technology. High-energy density Mg ion battery (MIB) is rechargeable battery with Mg or Mg alloy as anode. Mg ion battery is the most promising and important new type of green storage battery applicable in electric vehicle. The slow diffusion of Mg ion in the cathode material is one reason for the slow development of Mg ion battery. Thus, in this paper, we review five types of crystal structured Mg-transition metal complex oxides with one-dimensional tunnel structure, two-dimensional layer structure, three-dimensional spinel structure, three-dimensional NASICON structure, three-dimensional olivine structure, the preparation method and the electrahemical properties. Further, we also illustrate the diffusion performance of Mg ion in the solid cathode and the measures to improve the slowness diffusion. Finally, we point out the possible research directions of Mg-transition metal complex as cathode materials for Mg ion batteries in the future. Searching for high-energy density, high-capacity, high-voltage cathode materials and the compatible electrolyte is the key to realizing the third breakthrough of the Mg ion battery. We hope that this paper is favorable for understanding the cathode materials of Mg ion battery, promoting the development of Mg ion battery.

Contents
1 Introduction
2 One-dimensional tunnel structure
3 Two-dimensional layer structure
3.1 Mg-Ni-O
3.2 Mg-Ti-O
3.3 Mg-V-O
4 Three-dimensional spinel structure
4.1 Mg-Mn-O
4.2 Mg-Co-O
4.3 Mg-Fe-O
5 Three-dimensional post-spinel structure
6 Three-dimensional NASICON structure
7 Three-dimensional olivine structure
7.1 Mg-Fe-P-O
7.2 Mg-V-P-O-F
7.3 Mg-Mn-Si-O
7.4 Mg-Fe-Si-O
7.5 Mg-Co-Si-O
7.6 Mg-Ni-Si-O
8 Mg diffusion in the solid cathode
9 Outlook

CLC Number: 

[1] 陶占良(Tao Z Z), 陈军(Chen J J). 科学通报(Chinese Science Bulletin), 2012, 57(27): 2545.
[2] 沈健(Shen J), 彭博(Peng B), 陶占良(Tao Z L), 陈军(Chen J). 化学进展(Progress in Chemistry), 2010, 22: 515.
[3] Kim H S, Arthur T S, Allred G D, Zajicek J, Newman J G, Rodnyansky A E, Oliver A G, Boggess W C, Muldoon J. Nature Communications, 2011, 8: 1.
[4] Pellion Technologies. Moving Beyond Lithium with Low-Cost, High-Energy, Rechargeable Magnesium Batteries, (2011-09). http://www.pelliontech.com/media.htm
[5] Yoo H D, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach Doron. Energy& Environmental Science, 2013, 6: 2265.
[6] Liu B, Luo T, Mu G Y, Wang X F, Chen D, Shen G Z. ACS Nano, 2013, 7(9): 8051.
[7] Gershinsky G, Yoo H D, Gofer Y, Aurbach D. Langmuir, 2013, 29: 10964.
[8] Yagi S, Tanaka A, Ichitsubo T, Matsubara E. ECS Electrochemistry Letters, 2012, 1(2): D11.
[9] Gregory T D, Hoffman R J, Winterton R C. J. Electrochem. Soc., 1990, 137(3): 775.
[10] Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E. Nature, 2000, 407: 724.
[11] Yuan H T, Jiao L F, Cao J S, Liu X S, Zhao M, Wang Y M. J. Mater. Sci. Technol., 2004, 20(1): 41.
[12] NuLi Y N, Yang J, Li Y S, Wang J L. Chem. Commun., 2010, 46: 3794.
[13] Liang Y L, Feng R J, Yang S Q, Ma H, Liang J, Chen J, Adv. Mater., 2011, 23: 640.
[14] Levi E, Gofer Y, Aurbach D. Chem. Mater., 2010, 22: 860.
[15] Aurbach D, Suresh G S, Levi E, Aurbach D. Advanced Materials, 2007, 19: 4260.
[16] Johnson C S, Mansuetto M F, Thackeray M M. J. Electrochem. Soc., 1997, 144: 2279.
[17] Kumagai N, Komaba S, Sakai H. Journal of Power Sources, 2001, 97/98: 515.
[18] Ichitsubo T, Adachi T, Yagi S, Doi T. J. Mater. Chem., 2011, 21: 11764.
[19] Yagi S, Ichikawa Y, Yamada I, Dio T, Ichitsubo T, Matsubara E. Japanese Journal of Applied Physics, 2013, 52: 025501.
[20] 赵明(Zhao M), 焦丽芳(Jiao L F), 袁华堂(Yuan H T), 王伟(Wang W), 王永梅(Wang Y M). 南开大学学报(自然科学版)(Acta Scientiarum Naturalium Universitatis Nankaiensis), 2006, 39(3): 39.
[21] Tang R L, Li Y, Tao Q, Li N N, Li H, Han D D, Zhu P W, Wang X. Chin. Phys. B, 2013, 22(6): 066202-1-3
[22] 袁华堂(Yuan H T), 焦丽芳(Jiao L F), 曹建胜(Cao J S), 刘秀生(Liu X S), 赵明(Zhao M), 王永梅(Wang Y M). 电化学(Journal of Electrochemistry), 2004, 10(4): 460.
[23] Sanchez L, Pereira-Ramos J P. J. Mater. Chem., 1997, 7(3): 471.
[24] 袁华堂(Yuan H T), 曹建胜(Cao J S), 王一菁(Wang Y J), 周勇(Zhou Y), 武绪丽(Wu X L), 刘景旺(Liu J W). 高等学校化学学报(Chemical Journal of Chinese Universities), 2001, 22(10): 16.
[25] 高秀玲(Gao X L). 南开大学硕士论文(Master Dissertation of Nankai University), 2005.
[26] 高秀玲(Gao X L), 焦丽芳(Jiao L F), 袁华堂(Yuan H T), 曹建胜(Cao J S), 赵明(Zhao M), 李海霞(Li H X), 王永梅(Wang Y M). 电化学(Journal of Electrochemistry), 2005, 11(3): 337.
[27] 杨雷雷(Yang L L), 李法强(Li F Q), 向容(Xiang R), 朱朝梁(Zhu C L), 贾国凤(Jia G F), 彭正军(Peng Z J). 盐湖研究(Journal of Salt Lake Research), 2012, 20(2): 31.
[28] Ichikawa Y, Yagi S, Ichitsubo T, Matsubara E. Synthesis and Electrochemical Characteriazation of Spinel-type Mg Complex Oxides as Positive Electrode Active Materials for Mg Batteries. California: ECS, 2013, 500.
[29] 刘秀生(Liu X S). 南开大学硕士论文(Master Dissertation of Naikai University), 2004.
[30] Ling C, Fuminori M. Chemistry of Materials, 2013, 25: 3062.
[31] Makino K, Katayama Y, Miura T, Kishi T. Journal of Power Sources, 2001, 99: 66.
[32] Sun J Z. Asian Journal of Chemistry, 2011, 22: 260.
[33] Makino K, Katayama Y, Miura T, Kishi T. Journal of Power Sources, 2001, 97/98: 512.
[34] Huang Z D, Orikasa Y, Masese T, Yamamoto K, Mori T, Minato T, Uchimoto Y. Electrochemical Performance of MgxV2(PO4 ) 3 as Cathode Material for Mg Rechargeable Batteries. Shanghai: ECS, 2014.318.
[35] Ling C, Banerjee D, Song W, Zhang M J, Matsui M. J. Mater. Chem., 2012, 22: 13517.
[36] Feng Z Z, Yang J, NuLi Y N, Wang J L. J. Power Sources, 2008, 184: 604.
[37] 冯真真(Feng Z Z). 上海交通大学博士论文(Doctoral Dissertation of Shanghai Jiao Tong University), 2008.
[38] Feng Z Z, Yang J, NuLi Y N, Wang J L, Wang X J, Wang Z X. Electrochemistry Communications, 2008, 10: 1291.
[39] 陈强(Chen Q). 上海交通大学硕士论文(Master Dissertation of Shanghai Jiao Tong University), 2013.
[40] NuLi Y N, Yang J, Wang J L, Li Y. J. Phys. Chem. C, 2009, 113: 12594.
[41] Nuli Y N, Zheng Y P, Wang F, Yang J, Minett A I,Wang J L, Chen J. Electrochem. Commun., 2011, 13: 1143.
[42] 李云(Li Y). 上海交通大学硕士论文(Master Dissertation of Shanghai Jiao Tong University), 2009.
[43] Yun L, NuLi Y N, Yang J,Yilinuer T, Wang J L. Chinese Science Bulletin, 2011, 56: 386.
[44] Orikasa Y, Masese T, Koyama Y, Hattori M, Yamamoto K, Okado T, Huang Z D, Minato T, Tassel C, Kim J, Kobayashi Y, Abe T, Kageyama H, Uchimoto Y. Scientific Reports, 2014, 4: 5622.
[45] 李云(Li Y), 努丽燕娜(NuLi Y N), 杨军(Yang J), 伊丽奴尔 ·吐胡达洪(YiLi N E T H D H), 王久林(Wang J L). 电源技术(Chinese Journal of Power Sources), 2010, 34(10): 1031.
[46] Zheng Y P, NuLi Y N, Chen Q, Wang Y, Yang J, Wang J L. Electrochimica Acta, 2012, 66: 75.
[47] Yanna N L, Zheng Y P, Wang Y, Yang J, Wang J L. J. Mater. Chem., 2011, 21: 12437.
[48] Ranjan R, Burrty D. Olivine-Structured MgxFePO4: Cathode Material for Mg Ion Batteries. California: ECS, 2013.480.
[49] Wu J D, Gao G H, Wu G M, Liu B, Yang H Y, Zhou X W, Wang J C. RSC Adv., 2014, 4: 15014.
[50] Sun J Z. Monatsh Chem., 2013, 145: 103.

[1] Jianwen Liu, Heyang Jiang, Chihang Sun, Wenbin Luo, Jing Mao, Kehua Dai. P2-Structure Layered Composite Metal Oxide Cathode Materials for Sodium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 803-816.
[2] Guange Wang, Huaning Zhang, Tong Wu, Borui Liu, Qing Huang, Yuefeng Su. Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials [J]. Progress in Chemistry, 2020, 32(12): 2064-2074.
[3] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[4] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[5] Ruqin Liu, Zhirong Suo, Naizhen He, Shuang Chen, Ming Huang. Azo-Bridged Coupling Bisfurazan: Synthesis and Its Structure-Function Relationship Between Molecular Structure and Melting Point [J]. Progress in Chemistry, 2017, 29(5): 476-490.
[6] Zhang Songtao, Zheng Mingbo, Cao Jieming, Pang Huan. Porous Carbon/Sulfur Composite Cathode Materials for Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2016, 28(8): 1148-1155.
[7] Yi Luocai, Ci Suqin, Sun Chengli, Wen Zhenhai. Cathode Materials of Non-Aqueous Lithium-Oxygen Battery [J]. Progress in Chemistry, 2016, 28(8): 1251-1264.
[8] Chen Jun, Ding Nengwen, Li Zhifeng, Zhang Qian, Zhong Shengwen. Organic Cathode Material for Lithium Ion Battery [J]. Progress in Chemistry, 2015, 27(9): 1291-1301.
[9] Bai Ying, Li Yu, Zhong Yunxia, Chen Shi, Wu Feng, Wu Chuan. Li-Rich Transition Metal Oxide xLi2MnO3·(1-x)LiMO2 (M=Ni, Co or Mn) for Lithium Ion Batteries [J]. Progress in Chemistry, 2014, 26(0203): 259-269.
[10] Wang Fuqing, Chen Jian, Zhang Feng, Yi Baolian. Polyanion-Type Cathode Materials for Li-Ion Batteries [J]. Progress in Chemistry, 2012, 24(08): 1456-1465.
[11] Li Yuejiao, Hong Liang, Wu Feng. Preparation of Li3V2(PO4)3 Cathode Material for Power Li-Ion Batteries [J]. Progress in Chemistry, 2012, 24(01): 47-53.
[12] Wang Zhaoxiang, Chen Liquan, Huang Xuejie. Structural Design and Modification of Cathode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 284-301.
[13] Dong Quanfeng, Wang Chong, Zheng Mingsen. Research Progress and Prospects of Lithium Sulfur Batteries [J]. Progress in Chemistry, 2011, 23(0203): 533-539.
[14] Wang Weikun, Yu Zhongbao, Yuan Keguo, Wang Anbang, Yang Yusheng. Key Materials of High Energy Lithium Sulfur Batteries [J]. Progress in Chemistry, 2011, 23(0203): 540-547.
[15] Zhang Lianqi, Xiao Chengwei, Yang Ruijuan. Ordered/Disordered Rocksalt Structured Li1+xM1-xO2 Cathode Materials for Li-Ion Battery [J]. Progress in Chemistry, 2011, 23(0203): 410-417.