中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (09): 1586-1595 DOI: 10.7536/PC140456 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

SnS2 Based Anode Materials for Lithium-Ion Batteries

Liu Xin1, Zhao Hailei*1,3, Xie Jingying*2, Wang Ke2, Lv Pengpeng1, Gao Chunhui1   

  1. 1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2. Shanghai Institute of Space Power Sources, Shanghai 200245, China;
    3. Beijing Key Lab of New Energy Materials and Technology, Beijing 100083, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21273019), the National Key Basic Research Program of China (973 Program) (No.2013CB934003), the National High Techndogy Research and Development Program of China (863 Program) (No. 2013AA050902), the Shanghai Science and Technology Talent Project Funds (No.12XD1421900) and the Shanghai Science and Technology Development Funds (No. 12dz1200503, 13dz2280200)

PDF ( 1901 ) Cited
Export

EndNote

Ris

BibTeX

With the expanding of lithium-ion battery applications, novel cathode/anode materials with high capacity, long cycle life and excellent rate capability are in great demand. SnS2 is deemed to be one of potential alternative anode materials for its unique layer structure and high theoretical capacity. However, it suffers from large initial irreversible capacity, low electrical conductivity and huge volume change during charge/discharge process, which limit its practical application. In the present paper, the development history and latest progress of SnS2 anode material are reviewed. The basic properties of SnS2 are described. The approaches for improving the electrochemical performance of SnS2 are summarized, including micromorphology control of nanoparticles, preparation of SnS2/C and SnS2/oxide composites, bulk-doping, making integrative electrode, optimizing binder, etc. The influences of processing parameters (raw material, concentration, ratio, pH value, hydrothermal temperature and time) of hydrothermal (solovthermal) methods on the structure and electrochemical performance of the prepared SnS2 and SnS2/C composites are expounded. Besides, the problems associated with SnS2 anode materials are also discussed. Nanostructured SnS2 with high specific area, such as sheet- and flowerlike-shaped particles, is proved to be beneficial for cycle performance. Compositing SnS2 with different kinds of carbon can enhance the structure stability as well as electrical conductivity, and hence improve the cycle performance and rate capability of electrode. The optimized SnS2/graphene composite exhibits high specific capacity (over 1000 mAh/g), stable cycling performance and excellent rate capability, which make it a promising high capacity anode material for lithium-ion batteries.

Contents
1 Introduction
2 Basic properties of SnS2 anode materials
3 Approaches for improving the electrochemical performance of SnS2 materials
3.1 Early studies
3.2 Micromorphology control of SnS2 nanomaterials
3.3 SnS2/C composite materials
3.4 Other methods
4 Conclusion and outlook

CLC Number: 

[1] Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135: 1167.
[2] Scrosati B, Hassoun J, Sun Y K. Energy Environ. Sci., 2011, 4: 3287.
[3] Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Energy Environ. Sci., 2011, 4: 3243.
[4] McDowell M T, Lee S W, Nix W D, Cui Y. Adv. Mater., 2013, 25: 4966.
[5] Zhang W J. J. Power Sources, 2011, 196: 13.
[6] Wu H, Cui Y. Nano Today, 2012, 7: 414.
[7] Liang C, Gao M, Pan H, Liu Y, Yan M. J. Alloys Compd., 2013, 575: 246.
[8] Yuan S, Zhou Z, Li G. CrystEngComm, 2011, 13: 4709.
[9] Su L, Zhong Y, Zhou Z. J. Mater. Chem. A, 2013, 1: 15158.
[10] Liu L, Li Y, Yuan S, Ge M, Ren M, Sun C, Zhou Z. J. Phys. Chem. C, 2010, 114: 251.
[11] Yuan S, Li J, Yang L, Su L, Liu L, Zhou Z. ACS Appl. Mater. Interfaces, 2011, 3: 705.
[12] Mi L, Chen Y, Wei W, Chen W, Houb H, Zheng Z. RSC Adv., 2013, 3: 17431.
[13] Liu L, Yuan Z, Qiu C, Liu J. Solid State Ionics, 2013, 241: 25.
[14] Stephenson T, Li Z, Olsen B, Mitlin D. Energy Environ. Sci., 2014, 7: 209.
[15] 黄震雷(Huang Z L), 应皆荣(Ying J R), 孙莞柠(Sun W N), 姜长印(Jiang C Y), 万春荣(Wan C R). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2010, 39(1): 182.
[16] Liu L, Liu H, Kou H, Wang Y, Zhou Z, Ren M, Ge M, He X. Cryst. Growth Des., 2009, 9: 113.
[17] Chakrabarti A, Lu J, McNamara A M, Kuta L M, Stanley S M, Xiao Z, Maguire J A, Hosmane N S. Inorg. Chim. Acta, 2011, 374: 627.
[18] Im H S, Myung Y, Cho Y J, Kim C H, Kim H S, Back S H, Jung C S, Jang D M, Lim Y R, Park J, Ahnb J P. RSC Adv., 2013, 3: 10349.
[19] Geng H, Su Y, Wei H, Xu M, Wei L, Yang Z, Zhang Y. Mater. Lett., 2013, 111: 204.
[20] Cai P, Ma D K, Liu Q C, Zhou S M, Chen W, Huang S M. J. Mater. Chem. A, 2013, 1: 5217.
[21] Zhang Y C, Du Z N, Li S Y, Zhang M. Appl. Catal. B: Environ., 2010, 95: 153.
[22] Yang Z, Ren Y, Zhang Y, Li J, Li H, Huang X, Hu X, Xu Q. Biosens. Bioelectron., 2011, 26: 4337.
[23] Li J, Yang Z, Tang Y, Zhang Y, Hu X. Biosens. Bioelectron., 2013, 41: 698.
[24] Bian X, Lu X, Xue Y, Zhang C, Kong L, Wang C. J. Colloid Interface Sci., 2013, 406: 37.
[25] Morales J, Perez-Vicente C, Tirado J L. Solid State Ionics, 1992, 51: 133.
[26] Clerc D G, Cleary D A. Chem. Mater., 1994, 6: 13.
[27] Julien C, Perez-Vicente C. Solid State Ionics, 1996, 89: 337.
[28] Brousse T, Lee S M, Pasquereau L, Defives D, Schleich D M. Solid State Ionics, 1998, 113: 51.
[29] Wang L, Zhuoa L, Yu Y, Zhao F. Electrochim. Acta, 2013, 112: 439.
[30] Lefebvre-Devos I, Olivier-Fourcade J, Jumas J C, Lavela P. Phys. Rev. B, 2000, 64: 3110.
[31] Momma T, Shiraishi N, Yoshizawa A, Osaka T, Gedanken A, Zhu J, Sominski L. J. Powder Sources, 2001, 97: 198.
[32] Mukaibo H, Yoshizawa A, Momma T, Osaka T. J. Power Sources, 2003, 119: 60.
[33] Kim T J, Kim C, Son D, Choi M, Park B. J. Power Sources, 2007, 167: 529.
[34] Seo J W, Jang J T, Park S W, Kim C, Park B, Cheon J. Adv. Mater., 2008, 20: 4269.
[35] Zhai C, Du N, Zhang H, Yang D. Chem. Commun., 2011, 47: 1270.
[36] Ma J, Lei D, Mei L, Duan X, Li Q, Wang T, Zheng W. CrystEngComm, 2012, 14: 832.
[37] 马琳(Ma L), 李辉(Li H), 常焜(Chang K), 李赫(Li H), 陈卫祥(Chen W X). 浙江大学学报(工学版)(Journal of Zhejiang University (Engineering Science)), 2011, 45: 354.
[38] Liu S, Yin X, Chen L, Li Q, Wang T. Solid State Sci., 2010, 12: 712.
[39] Zai J, Wang K, Su Y, Qian X, Chen J. J. Power Sources, 2011, 196: 3650.
[40] Ma J, Lei D, Duan X, Li Q, Wang T, Cao A, Maod Y, Zheng W. RSC Adv., 2012, 2: 3615.
[41] Zai J, Qian X, Wang K, Yu C, Tao L, Xiao Y, Chen J. CrystEngComm., 2012, 14: 1364.
[42] Lei D, Zhang M, Qu B, Ma J, Li Q, Chen L, Lu B, Wang T. Electrochim. Acta, 2013, 106: 386.
[43] Wu Q, Jiao L, Du J, Yang J, Guo L, Liu Y, Wang Y, Yuan H. J. Power Sources, 2013, 239: 89.
[44] Zou Y, Wang Y. Chem. Eng. J., 2013, 229: 183.
[45] 周欢(Zhou H), 柴波(Chai B), 廖翰韬(Liao H T), 张献旺(Zhang X W). 人工晶体学报(Journal of Synthetic Cyrstal), 2013, 42: 2627.
[46] Gou X L, Chen J, Shen P W. Mater. Chem. Phys., 2005, 93: 557.
[47] Wang J, Liu J, Xu H, Ji S, Wang J, Zhou Y, Hodgsonc P, Li Y. J. Mater. Chem. A, 2013, 1: 1117.
[48] Xia J, Li G, Mao Y, Li Y, Shen P, Chen L. CrystEngComm, 2012, 14: 4279.
[49] Wang Q, Wang D, Wu M, Liu B, Chen J, Wang T, Chen J. J. Phys. Chem. Solids, 2011, 72: 630.
[50] Zhang Y Z, Pang H, Sun Y, Lai W Y, Wei A, Huang W. Int. J. Electrochem. Sci., 2013, 8: 3371.
[51] Su L, Jing Y, Zhou Z. Nanoscale, 2011, 3: 3967.
[52] Kim H S, Chung Y H, Kang S H, Sung Y E. Electrochim. Acta, 2009, 54: 3606.
[53] Zhai C, Du N, Zhang H, Yu J, Yang D. ACS Appl. Mater. Inter., 2011, 3: 4067.
[54] Li J, Wu P, Lou F, Zhang P, Tang Y, Zhou Y, Lu T. Electrochim. Acta, 2013, 111: 862.
[55] Du Y, Yin Z, Rui X, Zeng Z, Wu X J, Liu J, Zhu Y, Zhu J, Huang X, Yan Q, Zhang H. Nanoscale, 2013, 5: 1456.
[56] He M, Yuan L X, Huang Y H. RSC Adv., 2013, 3: 3374.
[57] Sun H, Ahmad M, Luo J, Shi Y, Shen W, Zhu J. Mater. Res. Bull., 2014, 49: 319.
[58] Jing Y, Zhou Z, Cabrera C R, Chen Z. J. Mater. Chem. A, 2014, DOI: 10.1039/C4TA01033G.
[59] Chang K, Wang Z, Huang G, Li H, Chen W, Lee J Y. J. Power Sources, 2012, 201: 259.
[60] Ji L, Xin H L, Kuykendall T R, Wu S L, Zheng H, Rao M, Cairns E J, Battaglic V, Zhang Y. Phys. Chem. Chem. Phys., 2012, 14: 6981.
[61] Zhang M, Lei D, Yu X, Chen L, Li Q, Wang Y, Wang T, Cao G. J. Mater. Chem., 2012, 22: 23091.
[62] Yin J, Cao H, Zhou Z, Zhang J, Qu M. J. Mater. Chem., 2012, 22: 23963.
[63] Zhuo L, Wu Y, Wang L, Yu Y, Zhang X, Zhao F. RSC Adv., 2012, 2: 5084.
[64] Luo B, Fang Y, Wang B, Zhou J, Song H, Zhi L. Energy Environ. Sci., 2012, 5: 5226.
[65] Sathish M, Mitani S, Tomai T, Honma I. J. Phys. Chem. C, 2012, 116: 12475.
[66] Shen C, Ma L, Zheng M, Zhao B, Qiu D, Pan L, Cao J, Shi Y. J. Solid State Electrochem., 2012, 16: 1999.
[67] Sathish M, Mitani S, Tomai T, Unemoto A, Honma I. J. Solid State Electrochem., 2012, 16: 1767.
[68] Jiang Z, Wang C, Du G, Zhong Y J, Jiang J Z. J. Mater. Chem., 2012, 22: 9494.
[69] Liu S, Lu X, Xie J, Cao G, Zhu T, Zhao X. ACS Appl. Mater. Inter., 2013, 5: 1588.
[70] Jiang J, Feng Y, Mahmood N, Liu F, Hou Y. Sci. Adv. Mater., 2013, 5: 1667.
[71] Mei L, Xu C, Yang T, Ma J, Chen L, Li Q, Wang T. J. Mater. Chem. A, 2013, 1: 8658.
[72] Jiang X, Yang X, Zhu Y, Shen J, Fan K, Li C. J. Power Sources, 2013, 237: 178.
[73] Du N, Wu X, Zhai C, Zhang H, Yang D. J. Alloys Compd., 2013, 580: 457.
[74] Chen P, Su Y, Liu H, Wang Y. ACS Appl. Mater. Inter., 2013, 5: 12073.
[75] Zhang Q, Li R, Zhang M, Zhang B, Gou X. Electrochim. Acta, 2014, 115: 425.
[76] Wu P, Du N, Zhang H, Liu J, Chang L, Wang L, Yang D, Jiang J Z. Nanoscale, 2012, 4: 4002.
[77] Chang K, Chen W X, Li H, Li H. Electrochim. Acta, 2011, 56: 2856.
[78] Shi W, Lu B. Electrochim. Acta, 2014, 133: 247.
[79] Wang Q, Huang Y, Miao J, Zhao Y, Wang Y. Electrochim. Acta, 2013, 93: 120.
[80] Wang Q, Huang Y, Miao J, Zhao Y, Zhang W, Wang Y. J. Am. Ceram. Soc., 2013, 96: 2190.
[81] Liu S, Yin X, Hao Q, Zhang M, Li L, Chen L, Li Q, Wang Y, Wang T. Mater. Lett., 2010, 64: 2350.
[82] Zhong H, Yang G, Song H, Liao Q, Cui H, Shen P, Wang C X. J. Phys. Chem. C, 2012, 116: 9319.
[83] Kang J G, Lee G H, Park K S, Kim S O, Lee S, Kim D W, Park J G. J. Mater. Chem., 2012, 22: 9330.
[84] Zhong H, Zhou P, Yue L, Tang D, Zhang L. J. Appl. Electrochem., 2014, 44: 45.

[1] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[2] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[3] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[4] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[5] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[6] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[7] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[8] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[9] Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang. Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes [J]. Progress in Chemistry, 2021, 33(9): 1473-1481.
[10] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[11] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[12] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[13] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[14] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[15] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.