中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (11): 1801-1810 DOI: 10.7536/PC140454 Previous Articles   Next Articles

• Review •

Fluorescent Color Tuning of Conjugated Polymer Materials: Mechanisms and Methods

Chen Yun, Shao Ya, Fan Lijuan*   

  1. Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21174099, 21374071)

PDF ( 2921 ) Cited
Export

EndNote

Ris

BibTeX

Conjugated polymers have received ever-increasing attention as fluorescent materials. They have many advantages compared with small-molecular fluorescent materials. As materials, conjugated polymers can be fabricated into different forms, such as thin films by spinning coating or drop casting, nano-/micro- fibers by electrospinning, nano-/micro- spheres, and micelle/vesicle/microtubule/nanoparticles by self-assembly. The great flexibility of conjugated polymers in processing makes it possible for them to meet the demands of different applications. With regard to the photophysics, the broader absorption allows conjugated polymers to be excited by different light sources. In addition, the high resistance to the photobleaching, or photostability, guarantees a long lifetime when conjugated polymers in real applications. These advantages allow conjugated polymers to be used in different fields, ranging from fluorescent bioimaging and sensors, to optical encoding and photoelectric displays. Some applications, such as encoding and display, require that the fluorescent materials have various emission colors. Thus fluorescent color tuning is very important and also very challenging for realization of these applications. This article gives some detailed discussion about the main mechanisms for the color tuning, based on the adjustment of the band gap of the single emission specie, or based on the chromaticity diagram advanced by International Commission on Illumination (CIE) for blending different emission species. The different methods for the color tuning are also discussed, such as physical blending of several emission species, copolymerization of different monomers, varying the substituent or the backbone of conjugated polymers, and changing the state of aggregation. Detailed examples with different chemical structures of polymers are provided to make clear illustrations about these mechanisms/methods.

Contents
1 Introduction
2 The mechanisms for fluorescent color tuning
3 Different methods for fluorescent color tuning of conjugated polymers
3.1 Physical blending
3.2 Copolymerization
3.3 Changing substituents
3.4 Controlling conjugated length
3.5 Varying the aggregations
4 Conclusion

CLC Number: 

[1] Kim J S, Ho P K, Murphy C E, Friend R H. Macromolecules, 2004, 37: 2861.
[2] Krebs F C. Sol. Energy Mater. Sol. Cells, 2009, 93: 394.
[3] Kallinger C, Hilmer M, Haugeneder A, Perner M, Spirkl W, Lemmer U, Feldmann J, Scherf U, Müllen K, Gombert A. Adv. Mater., 1998, 10: 920.
[4] Wang X, Kim Y G, Drew C, Ku B C, Kumar J, Samuelson L A. Nano Lett., 2004, 4: 331.
[5] Yoon J, Chae S K, Kim J M. J. Am. Chem. Soc., 2007, 129: 3038.
[6] Liao J H, Swager T M. Langmuir, 2007, 23: 112.
[7] Wang S L, Zhao W, Song J, Cheng S, Fan L J. Macromol. Rapid Commun., 2013, 34: 102.
[8] Kataoka K, Harada A, Nagasaki Y. Adv. Drug Deliv. Rev., 2001, 47: 113.
[9] Yoo H S, Park T G. J. Control. Release, 2001, 70: 63.
[10] Wu C, Chiu D T. Angew. Chem. Int. Ed., 2013, 52: 3086.
[11] Kietzke T, Neher D, Landfester K, Montenegro R, Güntner R, Scherf U. Nat. Mater., 2003, 2: 408.
[12] Zhu C, Liu L, Yang Q, Lv F, Wang S. Chem. Rev., 2012, 112: 4687.
[13] Pu K Y, Liu B. Adv. Funct. Mater., 2011, 21: 3408.
[14] Li K, Liu B. J. Mater. Chem., 2012, 22: 1257.
[15] Wu C, Bull B, Szymanski C, Christensen K, McNeill J. ACS Nano, 2008, 2: 2415.
[16] Chen L, McBranch D, Wang R, Whitten D. Chem. Phys. Lett., 2000, 330: 27.
[17] 吴伟(Wu W), 许海波(Xu H B), 程丝(Cheng S), 范丽娟(Fan L J). 高分子通报(Polym. Bull.), 2012, 9: 1.
[18] Thomas S W, Joly G D, Swager T M. Chem. Rev., 2007, 107: 1339.
[19] He F, Tang Y, Wang S, Li Y, Zhu D. J. Am. Chem. Soc., 2005, 127: 12343.
[20] Kumaraswamy S, Bergstedt T, Shi X, Rininsland F, Kushon S, Xia W, Ley K, Achyuthan K, McBranch D, Whitten D. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 7511.
[21] McQuade D T, Hegedus A H, Swager T M. J. Am. Chem. Soc., 2000, 122: 12389.
[22] Feng X, Yang G, Liu L, Lv F, Yang Q, Wang S, Zhu D. Adv. Mater., 2012, 24: 637.
[23] Hou J, Park M H, Zhang S, Yao Y, Chen L M, Li J H, Yang Y. Macromolecules, 2008, 41: 6012.
[24] Li Y, Zou Y. Adv. Mater., 2008, 20: 2952.
[25] Günes S, Neugebauer H, Sariciftci N S. Chem. Rev., 2007, 107: 1324.
[26] Wu H, Ying L, Yang W, Cao Y. Chem. Soc. Rev., 2009, 38: 3391.
[27] Pei Q, Yu G, Zhang C, Yang Y, Heeger A J. Science, 1995, 269: 1086.
[28] 李永舫(Lin Y F). 化学进展(Prog. Chem.), 2002, 14: 207.
[29] Fan L J, Jones W E. Handbook of Photochemistry and Photophysics of Polymeric Materials. (Allen N S, Ed.). Wiley, 2010. Chapter 1: 1.
[30] Wu C, Peng H, Jiang Y, McNeill J J. Phys. Chem. B, 2006, 110: 14148.
[31] Pan C J, Sugiyasu K, Wakayama Y, Sato A, Takeuchi M. Angew. Chem. Int. Ed., 2013, 52: 10775.
[32] Pan C J, Sugiyasu K, Takeuchi M. Chem. Commun., 2014. DOI: 10.1039/c4cc03594a.
[33] Zhou Y, Sun Q, Tan Z A, Zhong H, Yang C, Li Y. J. Phys. Chem. C, 2007, 111: 6862.
[34] Kuo C P, Chuang C N, Chang C L, Leung M K, Lian H Y, Wu K C. J. Mater. Chem. C, 2013, 1: 2121.
[35] 侯琼(Hou Q), 牛于华(Niu Y H), 杨伟(Yang W), 阳任强(Yang R Q), 袁敏(Yuan M), 曹镛(Cao Y). 高分子学报(Acta Polymerica Sinica), 2003, 2: 161.
[36] Baier M C, Huber J, Mecking S. J. Am. Chem. Soc., 2009, 131: 14267.
[37] Ego C, Marsitzky D, Becker S, Zhang J, Grimsdale A C, Müllen K, MacKenzie J D, Silva C, Friend R H. J. Am. Chem. Soc., 2003, 125: 437.
[38] Fischer C S, Baier M C, Mecking S. J. Am. Chem. Soc., 2013, 135: 1148.
[39] Rong Y, Wu C F, Yu J B, Zhang X J, Ye F M, Zeigler M, Gallina M E, Wu I C, Zhang Y, Chan Y H, Sun W, Uvdal K, Chiu D T. ACS Nano, 2013, 7: 376.
[40] Xu Y, Nagai A, Jiang D. Chem. Commun., 2013, 49: 1591.
[41] Kou Y, Xu Y, Guo Z, Jiang D. Angew. Chem. Int. Ed., 2011, 50: 8753.
[42] Xu Y, Chen L, Guo Z, Nagai A, Jiang D. J. Am. Chem. Soc., 2011, 133: 17622.
[43] Chen L, Honsho Y, Seki S, Jiang D. J. Am. Chem. Soc., 2010, 132: 6742.
[44] Liu X, Xu Y, Jiang D. J. Am. Chem. Soc., 2012, 134: 8738.
[45] Brdas J, Heeger A. J. Chem. Phys. Lett., 1994, 217: 507.
[46] Jin S H, Kang S Y, Yeom I S, Kim J Y, Park S H, Lee K, Gal Y S, Cho H N. Chem. Mater., 2002, 14: 5090.
[47] Hardison L M, Zhao X, Jiang H, Schanze K S, Kleiman V D. J. Phys. Chem. C, 2008, 112: 16140.
[48] Zhao X, Pinto M R, Hardison L M, Mwaura J, Müller J, Jiang H, Witker D, Kleiman V D, Reynolds J R, Schanze K S. Macromolecules, 2006, 39: 6355.
[49] Musick K Y, Hu Q S, Pu L. Macromolecules, 1998, 31: 2933.
[50] Burroughes J, Bradley D, Brown A, Marks R, Mackay K, Friend R, Burns P, Holmes A. Nature, 1990, 347: 539.
[51] Zhang C, Braun D, Heeger A J. J. Appl. Phys., 1993, 73: 5177.
[52] Burn P L, Kraft A, Baigent D, Bradley D D, Brown A R, Friend R H, Gymer R W, Holmes A B, Jackson R W. J. Am. Chem. Soc., 1993, 115: 10117.
[53] Zhao W, Song J, Shao Y, Zhang W, Au A, Fan L J. Macromol. Chem. Phys., 2012, 213: 1913.
[54] Hay M, Klavetter F. J. Am. Chem. Soc., 1995, 117: 7112.
[55] McDonald R N, Campbell T W. J. Am. Chem. Soc., 1960, 82: 4669.
[56] Chen X, Liao J L, Liang Y, Ahmed M, Tseng H E, Chen S A. J. Am. Chem. Soc., 2003, 125: 636.
[57] Shen D Z, Wang L S, Pan Z X, Cheng S, Zhu X, Fan L J. Macromolecules, 2011, 44: 1009.
[58] Jiang H, Zhao X, Schanze K S. Langmuir, 2006, 22: 5541.
[59] Jiang H, Zhao X, Schanze K S. Langmuir, 2007, 23: 9481.

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[6] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[7] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[8] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[9] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[10] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[13] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[14] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[15] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.