中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (09): 1551-1561 DOI: 10.7536/PC140453 Previous Articles   Next Articles

• Review •

Preparation of Iron and Manganese Oxides/Carbon Composite Materials for Arsenic Removal from Aqueous Solution

Zhu Jin, Lou Zimo, Wang Zhuoxing, Xu Xinhua*   

  1. Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21477108, 21277119)

PDF ( 2934 ) Cited
Export

EndNote

Ris

BibTeX

Arsenic pollution has posed increasingly severe threat to human health, therefore, dealing with the problem of arsenic contamination in water bodies is extremely urgent. Iron and manganese oxides/carbon composite materials, characterized in superior adsorption properties, strong performance of separation and regeneration potentials, have received more and more concern in recent years. Especially, novel carbon-based nano materials such as carbon nanotubes and graphene have high specific surface area and possess a wealth of surface functional groups, providing good conditions for the loading of iron/manganese oxides. Moreover, finer particle size of iron/manganese oxides can be formed on the surface of carbon-based materials, offering more adsorption sites for the adsorption of arsenic. In this paper, we have purposively focused on the synthesis methods of Fe-Mn oxides/carbon composite materials from the domestic and foreign research programs. The advantages and disadvantages of the synthesis of this material were compared, and the removal effects and adsorption mechanisms of arsenic by this adsorbent were elucidated. Furthermore, the regeneration potential of iron and manganese oxides/carbon composite materials was analyzed and the existing deficiencies of this material in practical application were proposed. Finally, the development trend of arsenic removal in water bodies by this new composite material was forecasted.

Contents
1 Introduction
2 Preparation of iron and manganese oxides/carbon composite materials
2.1 Iron/manganese oxides
2.2 Iron and manganese oxides/ activated carbon
2.3 Iron and manganese oxides/carbon nanotubes
2.4 Iron and manganese oxides/ graphene
3 Influencing factors of arsenic removal from water by iron and manganese oxides/carbon composite materials
3.1 Properties of composite materials
3.2 Environmental conditions
4 Adsorption mechanisms of arsenic by iron and manganese oxides/ carbon composite materials
5 Regenerability
6 Conclusion and outlook

CLC Number: 

[1] Mohan D, Pittman C U Jr. J. Hazard. Mater., 2007, 142(1/2): 1.
[2] Jain C K, Ali I. Water Res., 2000, 34(17): 4304.
[3] Malik A H, Khan Z M, Mahmood Q, Nasreen S, Bhatti Z A. J. Hazard. Mater., 2009, 168(1): 1.
[4] Sheng T T, Baig S A, Hu Y J, Xue X Q, Xu X H. Arab. J. Chem., 2014, 7(1): 27.
[5] Lin T F, Wu J K. Water Res., 2001, 35(8): 2049.
[6] Guan X H, Du J S, Meng X G, Sun Y K, Sun B, Hu Q H. J. Hazard. Mater., 2012, 215/216: 1.
[7] Dixit S, Hering J G. Environ. Sci. Technol., 2003, 37(18): 4182.
[8] Camacho L M, Parra R R, Deng S G. J. Hazard. Mater., 2011, 189(1/2): 286.
[9] Mishra A K, Ramaprabhu S. Desalination, 2011, 282: 39.
[10] Lv X S, Xue X Q, Jiang G M, Wu D L, Sheng T T, Zhou H Y, Xu X H. J. Colloid Interf. Sci., 2014, 417: 51.
[11] Hua M, Zhang S J, Pan B C, Zhang W M, Lv L, Zhang Q X. J. Hazard. Mater., 2012, 211/212: 317.
[12] Jiang W, Lv J T, Luo L, Yang K, Lin Y F, Hu F B, Zhang J, Zhang S Z. J. Hazard. Mater., 2013, 262: 55.
[13] Lakshmipathiraj P, Narasimhan B R V, Prabhakar S, Raju G B. J. Hazard. Mater., 2006, 136(2): 281.
[14] Hu J, Chen G H, Lo I M C. Water Res., 2005, 39(18): 4528.
[15] Ma J M, Lian J B, Duan X C, Liu X D, Zheng W J. J. Phys. Chem. C, 2010, 114(24): 10671.
[16] Feng L Y, Cao M H, Ma X Y, Zhu Y S, Hu C W. J. Hazard. Mater., 2012, 217/218: 439.
[17] Wang H Q, Yang G F, Li Q Y, Zhong X X, Wang F P, Li Z S, Li Y H. New J. Chem., 2011, 35(2): 469.
[18] Su Q, Pan B C, Wan S L, Zhang W M, Lv L. J. Colloid Interf. Sci., 2010, 349(2): 607.
[19] 常方方(Chang F F), 曲久辉(Qu J H), 刘锐平(Liu R P), 刘会娟(Liu H J), 雷鹏举(Lei P J), 张高生(Zhang G S), 武荣成(Wu R C). 环境科学学报(Acta Scientiae Circumstantiae), 2006, 26(11):1769.
[20] Wu R C, Qu J H, Chen Y S. Water Res., 2005, 39(4):630.
[21] Zhang G S, Liu H J, Liu R P, Qu J H. J. Hazard. Mater., 2009, 168(2/3): 820.
[22] Zhang Q L, Lin Y C, Chen X, Gao N Y. J. Hazard. Mater., 2007, 148(3): 671.
[23] 姜良艳(Jiang L Y), 周仕学(Zhou S X), 王文超(Wang W C), 吴峻青(Wu J Q), 卢国俭(Lu G J). 环境科学学报(Acta Scientiae Circumstantiae), 2008, 28(2): 337.
[24] Yürüm A, Kocaba?-Atakl? Z Ö, Sezen M, Semiat R, Yürüm Y. Chem. Eng. J., 2014, 242: 321.
[25] Liu Z G, Zhang F S, Sasai R. Chem. Eng. J., 2010, 160(1): 57.
[26] Veli D? kovi D? Z, Vukovi D? G D, Marinkovi D? A D, Moldovan M S, Peri D? -Gruji D? A A, Uskokovi D? P S, Risti D? M-D. Chem. Eng. J., 2012, 181/182: 174.
[27] Mishra A K, Ramaprabhu S. J. Phys. Chem. C, 2010, 114(6): 2583.
[28] Huang X P, Pan C X, Huang X T. Mater. Lett., 2007, 61(4/5): 934.
[29] Saleh T A, Agarwal S, Gupta V K. Appl. Catal. B: Environ., 2011, 106(1/2): 46.
[30] Luo C, Tian Z, Yang B, Zhang L, Yan S Q. Chem. Eng. J., 2013, 234: 256.
[31] Tamilarasan P, Ramaprabhu S. AIP Conf. Proc., 2012, 1447(1): 321.
[32] Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22(35): 3906.
[33] Wang S B, Sun H Q, Ang H M, Tadé M O. Chem. Eng. J., 2013, 226: 336.
[34] 袁小亚(Yuan X Y). 无机材料学报(Journal of Inorganic Materials), 2011, 26(6): 561.
[35] Chandra V, Park J, Chun Y, Lee J W, Hwang I C, Kim K C. ACS Nano, 2010, 4(7): 3979.
[36] Luo X B, Wang C C, Luo S L, Dong R Z, Tu X M, Zeng G S. Chem. Eng. J., 2012, 187: 45.
[37] Li L, Zhou G M, Weng Z, Shan X Y, Li F, Cheng H M. Carbon, 2014, 67: 500.
[38] Sun H M, Cao L Y, Lu L H. Nano Res., 2011, 4(6): 550.
[39] Wang H L, Robinson J T, Li X L, Dai H J. J. Am. Chem. Soc., 2009, 131(29): 9910.
[40] Deng H, Li X L, Peng Q, Wang X, Chen J P, Li Y D. Angew. Chem. Int. Edit., 2005, 44(18): 2782.
[41] Vadahanambi S, Lee S H, Kim W J, Oh I K. Environ. Sci. Technol., 2013, 47(18): 10510.
[42] Zhang S J, Li X Y, Chen J P. Carbon, 2010, 48(1): 60.
[43] Sabbatini P, Rossi F, Thern G, Marajofsky A, de Cortalezzi M M F. Desalination, 2009, 248(1/3): 184.
[44] Mayo J T, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin V L. Sci. Technol. Adv. Mat., 2007, 8(1/2): 71.
[45] Jolivet J P, Chanéac C, Tronc E. Chem. Commun., 2004, 481.
[46] Chang Q G, Lin W, Ying W C. J. Hazard. Mater., 2010, 184(1/3): 515.
[47] Maiti A, Basu J K, De S. Chem. Eng. J., 2012, 191: 1.
[48] Lombi E, Wenzel W W, Sletten R S. J. Plant Nutr. Soil Sc., 1999, 162(4): 451.
[49] Vitela-Rodriguez A V, Rangel-Mendez J R. J. Environ. Manage., 2013, 114: 225.
[50] 姚淑华(Yao S H), 贾永锋(Jia Y F), 汪国庆(Wang G Q), 石中亮(Shi Z L). 过程工程学报(The Chinese Journal of Process Engineering), 2009, 9(2): 250.
[51] 盛田田(Sheng T T). 浙江大学硕士论文(Master Dissertation of Zhejiang University), 2014.
[52] Vaughan R L Jr, Reed B E. Water Res., 2005, 39(6): 1005.
[53] Chen W F, Parette R, Zou J Y, Cannon F A, Dempsey B A. Water Res., 2007, 41(9): 1851.
[54] Grossl P R, Eick M, Sparks D L, Goldberg S, Ainsworth C C. Environ. Sci. Technol., 1997, 31(2): 321.
[55] 肖静(Xiao J). 湘潭大学硕士论文(Master Dissertation of Xiangtan University), 2013.

[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[3] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[4] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[5] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[6] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[7] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[8] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[9] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[10] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[11] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.
[12] Le Gong, Rong Yang, Rui Liu, Liping Chen, Yinglin Yan, Zufei Feng. Application of Graphene Quantum Dots in Energy Storage Devices [J]. Progress in Chemistry, 2019, 31(7): 1020-1030.
[13] Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu. Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials [J]. Progress in Chemistry, 2019, 31(5): 667-680.
[14] Aobo Geng, Qiang Zhong, Changtong Mei, Linjie Wang, Lijie Xu, Lu Gan. Applications of Wet-Functionalized Graphene in Rubber Composites [J]. Progress in Chemistry, 2019, 31(5): 738-751.
[15] Xiaojuan Wang, Zhenzhen Liu, Qi Chen, Xiaoqiang Wang, Fang Huang. Interactions between Graphene Materials and Proteins [J]. Progress in Chemistry, 2019, 31(2/3): 236-244.