中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (10): 1741-1751 DOI: 10.7536/PC140442 Previous Articles   Next Articles

Special Issue: 酶化学

• Review •

Applications of Transpeptidase Sortase A for Protein Modifications

Tan Xianglong1,3, Xu Ling2, Shi Jing*2, Li Yiming*1   

  1. 1. School of Medical Engineering, Hefei University of Technology, Hefei 230009, China;
    2. Department of Chemistry, University of Science and Technology of China, Hefei 230026, China;
    3. School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China(No. 21102083, 21372058)

PDF ( 3949 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, the development of chemical biology has been increasing focusing on efficient and mild methods for chemo-selective ligations and site-specific proteins labeling and modifications. These methods have ability to obtain large amount of post translational modifications and artificial proteins, which could not be acquired by using traditional gene cloning and recombinant protein expression strategy. In later 1990s, a new transpeptidase Sortase A was isolated from Staphylococcus Aureus, which can be used to modify proteins bearing a short recognition sequence (most usually as LPXTG or LPAAG). The active-site Cys residue of Sortase A cleaves between LPXT and G residue to produce a thioester intermediate, which can reacts with a nucleophile containing one to five Gly to afford the ligation product. Base on above-mentioned reason, the Sortase-mediated ligation has been successfully applied to many fields such as C-terminals protein modification, labeling and protein semisynthesis with high efficiency recently. Compared to traditional chemical synthesis,Sortase catalyzed semi-chemical synthesis method can preferably address the size problem of protein chemical synthesis. This mini review reports and discusses the recent important development of protein ligations, labeling and modifications by using Sortase mediated ligation method.

Contents
1 Introduction
2 The structure of Sortase and the mechanism of the transpeptidation reaction catalyzed by Sortase
3 Sortases as tools for protein ligations and modifications
3.1 Validation of the in vitro Sortase activity
3.2 Seek for the mutants of Sortase
3.3 Immobilization of Sortase
4 Application of Sortase to protein ligations and modifications
4.1 C terminal modifications
4.2 N terminal modifications
4.3 C and N terminal modifications
4.4 Preparation of unnatural N-N/C-C chimeric proteins by using Sortase
4.5 Protein immobilization
4.6 Preparation of cyclopeptides
4.7 Sortase-tag expressed protein ligation reaction
4.8 Other applications
5 Conclusion and outlook

CLC Number: 

[1] Hackenberger C P R, Schwarzer D. Angew. Chem. Int. Ed., 2008, 47: 10030.
[2] a) Merrifield R B. Angew. Chem. Int. Ed., 1985, 24: 799; b) Hermkens P H H, Ottenheijm H C J, Rees D. Tetrahedron, 1996, 52: 4527.
[3] a) Bodanszky M. Principles of Peptide Synthesis. Berlin: Springer, 1984; b) Seewald N, Jakubke H D. Peptides: Chemistry and Biology. Weinheim: Wiley-VCH, 2002: 311.
[4] Dawson P E, Muir T W, Clark-Lewis I, Kent S B. Science, 266: 776.
[5] Kent S B. Chem. Soc. Rev., 2009, 38: 338.
[6] a) Mende F, Seitz O. Angew. Chem. Int. Ed., 2011, 123: 1266; b) Mende F, Seitz O. Angew. Chem. Int. Ed., 2011, 50: 1232.
[7] a) Canne L E, Ferre-D'Amare A R, Burley S K, Kent S B H. J. Am. Chem. Soc., 1995, 117: 2998; b) Liu C F, Rao C, Tam J P. J. Am. Chem. Soc., 1996, 118: 307; c) Nilsson B L, Kiessling L L, Raines R T. Org. Lett., 2000, 2: 1939; d) Bode J W, Fox R M, Baucom K D. Angew. Chem. Int. Ed., 2006, 118: 1270; e) Hackenberger C P R, Schwarzer D. Angew. Chem. Int. Ed., 2008, 120: 10182; f) Zheng J S, Chang H N, Wang F L, Liu L. J. Am. Chem. Soc., 2011, 133: 11080.
[8] a) Fang G M, Li Y M, Shen F, Huang Y C, Li J B, Lin Y, Cui H K, Liu L. Angew. Chem. Int. Ed., 2011, 50: 7645; b) Fang G M, Wang J X, Liu L. Angew. Chem. Int. Ed., 2002, 51: 10347; c) Zheng J S, Tang S, Huang Y C, Liu L. Acc. Chem. Res., 2013, 46: 2475; d) Zheng J S, Tang S, Guo Y, Chang H N, Liu L. ChemBioChem, 2012, 13: 542; e) Chen Y Q, Chen C C, He Y, Yu M, Xu L, Tian C L, Guo Q X, Shi J, Zhang M, Li Y M. Tetrahedron Lett., 2014, 55: 2883; f) Zheng J S, Yu M, Qi Y K, Tang S, Shen F, Wang Z P, Xiao L, Zhang L, Tian C L, Liu L. J. Am. Chem. Soc., 2014, 136: 3695; g) Zheng J S, Tang S, Qi Y K, Wang Z P, Liu L. Nat. Protoc., 2013, 8: 2483; h) Huang Y C, Chen C C, Li S J, Gao S, Shi J, Li Y M. Tetrahedron, 2014, 70: 2951; i) Huang Y C, Li Y M, Chen Y, Pan M, Li Y T, Yu L, Guo Q X, Liu L. Angew. Chem. Int. Ed., 2013, 52: 4858; j) Zheng J S, Chang H N, Shi J, Liu L. Sci. China. Chem., 2012, 55: 65; k) Pan M, He Y, Wen M, Wu F M, Sun D M, Li S J, Zhang L H, Li Y M, Tian C L. Chem. Commun., 2014, 50: 5837.
[9] Miquel V P, Muir T W. Cell, 2010, 143: 191.
[10] Muir T W, Sondhi D, Cole P A. Proc. Natl. Acad. Sci. U.S.A., 1998, 95: 6705.
[11] Evans T C, Benner J, Xu M Q. Protein Sci., 1998, 7: 2256.
[12] Giriat I, Muir T W. J. Am. Chem. Soc., 2003, 125: 7180.
[13] Pritz S. Mini-Reviews in Organic Chemistry, 2008, 5: 47.
[14] a) Wang L, Xie J M, Schultz P G. Annu. Rev. Biophys. Biomol. Struct., 2006, 35: 249; b) Liu C C, Schultz P G. Annu. Rev. Biochem., 2010, 79: 413; c) Davis L, Chin J W. Nat. Rev. Mol. Cell Biol., 2012, 13: 168; d)Wang L, Brock A, Herberich B, Schultz P G. Science, 2001, 292: 498.
[15] a) Li Y M, Yang M Y, Huang Y C, Li Y T, Chen P R, Liu L. ACS Chem. Biol., 2012, 7: 1015; b)Li Y M, Pan M, Li Y T, Huang Y C, Guo Q X. Org. Biomol. Chem., 2013, 11: 2624; c)Li Y M, Yang M Y, Huang Y C, Song X D, Liu L, Chen P R. Chem. Sci., 2012, 3: 2766.
[16] a) Saxon E, Armstrong J I, Bertozzi C R. Org. Lett., 2000, 2: 2141; b) Nilsson B L, Hondal R J, Soellner M B, Raines R T J. Am. Chem. Soc., 2003, 125: 5268.
[17] Merkx R, Rijkers D T S, Kemmink J, Liskamp R M J. Tetrahedron Lett., 2003, 44: 4515.
[18] KolbH C, FinnM G, SharplessK B. Angew. Chem. Int. Ed., 2001, 40: 2004.
[19] Wu P, Fokin V V. Aldrichimica Acta, 2007, 40: 7.
[20] Becer C R, Hoogenboom R, Schubert U S. Angew. Chem. Int. Ed., 2009, 48: 4900.
[21] a) Rideout D. Science, 1986, 233: 561; b) Mahal L K, Yarema K J, Bertozzi C R. Science, 1997, 276: 1125; c) Brustad E M, Lemke E A, Schultz P G, Deniz A A. J. Am. Chem. Soc., 2008, 130: 17664; d) Tsao M L, Tian F,Schultz P G. ChemBioChem, 2005, 6: 2147; e) Kiick K L, Saxon E, Tirrell D A, Bertozzi C R. Proc. Natl. Acad. Sci. U.S.A., 2002, 99: 19.
[22] a) Agard N J, Prescher J A, Bertozzi C R. J. Am. Chem. Soc., 2004, 126: 15046; b) Baskin J M. Proc. Natl. Acad. Sci. U.S.A., 2007, 104: 16793; c) Ning X, Guo J, Wolfert M A, Boons G J. Angew. Chem. Int. Ed., 2008, 47: 2253; d)Plass T, Milles S, Koehler C, Schultz C, Lemke E A. Angew. Chem. Int. Ed., 2011, 50: 3878.
[23] a) Liang G, Ren H, Rao J. Nat. Chem., 2010, 2: 54; b) Nguyen D P, Elliott T, Holt M, Muir T W, Chin J. J. Am. Chem. Soc., 2011, 133: 11418.
[24] a) Ning X, Temming R P, Dommerholt J, Guo J, Ania D B, Debets M F, Wolfert M A, Boons G, Delft F L. Angew. Chem. Int. Ed., 2010, 49: 3065; b) McKay C S, Blake J A, Cheng J, Danielson D C, Pezacki J P. Chem. Commun., 2011, 47: 10040.
[25] a) Song W, Wang Y, Qu J, Lin Q. J. Am. Chem. Soc., 2008, 130: 9654; b) Song W, Yang Y, Qu J, Madden M M, Lin Q. Angew. Chem. Int. Ed., 2008, 47: 2832; c) Gruber B, Balk S, Stadlbauer S, Konig B. Angew. Chem. Int. Ed., 2012, 51: 10060.
[26] a) Wang Q, Chan T R, Hilgraf R, Fokin V V, Sharpless K B, Finn M G. J. Am. Chem. Soc., 2003, 125: 3192; b) Nguyen D P, Lusic H, Neumann H, Kapadnis P B, Deiters A, Chin J W. J. Am. Chem. Soc., 2009, 131: 8720; c) Presolski S I, Hong V, Cho S, Finn M G. J. Am. Chem. Soc., 2010, 132: 14570.
[27] a) Blackman M L, Royzen M, Fox J M. J. Am. Chem. Soc., 2008, 130: 13518; b) Devaraj N K, Weissleder R, Hilderbrand S A. Bioconjugate Chem., 2008, 19: 2297; c) Plass T, Milles S, Koehler C, Szymanski J, Mueller R, Wiebler M, Schultz C, Lemke E A. Angew. Chem. Int. Ed., 2012, 51: 4166; d) Lang K, Davis L, Wallace S, Mahesh M, Cox D J, Blackman M L, Fox J M, Chin J W. J. Am. Chem. Soc., 2012, 134: 10317; e) Yang J, Seckute J, Cole C M, Devaraj N K. Angew. Chem. Int. Ed., 2012, 51: 7476; f) Seitchik J L, Peeler J C, Taylor M T, Blackman M L, Rhoads T W, Cooley R B, Refakis C, Fox J M, Mehl R A. J. Am. Chem. Soc., 2012, 134: 2898.
[28] Popp M W, Ploegh H L. Angew. Chem. Int. Ed., 2011, 50: 5024.
[29] Ilangovan U, Ton-That H, Iwahara J, Schneewind O, Clubb R T. Proc. Natl. Acad. Sci. U.S.A., 2001, 98: 6056.
[30] Paterson G K, Mitchell T J. Trends Microbiol., 2004, 12: 89.
[31] Ton-That H, Liu G, Mazmanian K S, Faull K F, Schneewind O. Proc. Natl. Acad. Sci. U.S.A., 1999, 96: 12424.
[32] Frankel B A, Kruger R G, Robinson D E, Kelleher N L, McCafferty D G. Biochemistry, 2005, 44: 11188.
[33] Guimaraes C P, Witte M D, Theile C S, Bozkurt G, Kundrat L, Blom A E M, Ploegh H L. Nat. Protoc., 2013, 8: 1787.
[34] Mazmanian S K, Ton-That H, Su K, Schneewind O. Proc. Natl. Acad. Sci. U.S.A., 2002, 99, 2293.
[35] Kharat A S, Tomasz A. Infect. Immun., 2003, 71: 2758.
[36] Tettelin H, Nelson K E, Paulsen L T, Eisen J A, Read T D, Peterson S, Heidelberg J, DeBoy R T, Haft D H, Dodson R J, Durkin A S, Gwinn M, Kolonay J F, Nelson W C, Peterson J D, Umayam L A, White O, Salzberg S L, Lewis M R, Radune D, Holtzapple E, Khouri H, Wolf A M, Utterback T R, Hansen C L, McDonald L A, Feldblyum T V, Angiuoli A, Dickinson T, Hickey E K, Holt I E, Loftus B J, Yang F, Smith H O, Venter J C, Dougherty B A, Morrison D A, Hollingshead S K, Fraser C M. Science, 2001, 293: 498.
[37] Pallen M J, Lam A C, Antonio M, Dunbar K. Trends Microbiol., 2001, 9: 97.
[38] Barnett T C, Scott J R. J. Bacteriol., 2002, 184: 2181.
[39] Mao H Y, Hart S A, Schink A, Pollok B A. J. Am. Chem. Soc., 2004, 126: 2670.
[40] Popp M W, Antos J M, Grotenbreg G M, Spooner E, Ploegh H L. Nat. Chem. Biol., 2007, 3: 707.
[41] Piotukh K, Geltinger B, Heinrich N, Gerth F, Beyermann M, Freund C, Schwarzer D. J. Am. Chem. Soc., 2011, 133: 17536.
[42] Steinhagen M, Zunker K, Nordsieck K, Beck-Sickinger A G. Bioorg. Med. Chem., 2013, 21: 3504.
[43] Antos J M, Miller G M, Grotenbreg G M, Ploegh H L. J. Am. Chem. Soc., 2008, 130: 16338.
[44] Popp M W, Antos J M, Ploegh H L. Curr. Protoc. Protein Sci., 2009, Chap. 15, Unit 153.
[45] Ling J J, Policarpo R L, Rabideau A E, Liao X, Pentelute B L. J. Am. Chem. Soc., 2012, 134: 10749.
[46] Theile C S, Witte M D, Blom A E M, Kundrat L, Ploegh H L, Guimaraes C P. Nat. Protoc., 2013, 8: 1808.
[47] Li Y M, Li Y T, Pan M, Kong X Q, Huang Y C, Hong Z Y, Liu L. Angew. Chem. Int. Ed., 2014, 53: 2198.
[48] Williamson D J, Fascione M A, Webb M E, Turnbull W B. Angew. Chem. Int. Ed., 2012, 51: 9377.
[49] Race P R, Bentley M L, Melvin J A, Crow A, Hughes R K, Smith W D, Sessions R B, Kehoe M A, McCafferty D G, Banfield M J. J. Biol. Chem., 2009, 284: 6924.
[50] Antos J M, Chew G L, Guimaraes C P, Yoder N C, Grotenberg G M, Ploegh M W. J. Am. Chem. Soc., 2009, 131: 10800.
[51] Wittea M D, Cragnolinia J J, Dougana S K, Yodera N C, Popp M W, Ploegh H L. Proc. Natl. Acad. Sci. U.S.A., 2012, 109, 11993.
[52] Witte M D, Theile C S, Wu T, Guimaraes C P, Blom A E M, Ploegh H L. Nat. Protoc., 2013, 8: 1808.
[53] Parthasarathy R, Subramanian S, Boder E T. Bioconjugate Chem., 2007, 18: 469.
[54] Popp M W, Dougana S K, Chuanga T Y, Spoonera E, Ploegh H L. Proc. Natl. Acad. Sci. U.S.A., 2011, 108: 3169.
[55] Warden-Rothman R, Caturegli I, Popik V, Tsourkas A. Anal. Chem., 2013, 85: 11090.
[56] Swee L K, Guimaraes C P, Sehrawat S, Spooner E, Barrasa M I, Ploegh H L. Proc. Natl. Acad. Sci. U.S.A., 2013, 110: 1428.
[57] Teschke T, Geltinger B, Dose A, Freund C, Schwarzer D. ACS Chem. Biol., 2013, 8: 1692.

[1] Zhao Yanan, Wang Mengfan, Qi Wei, Su Rongxin, He Zhimin. Supramolecular Artificial Enzyme Based on Assembling Peptide Gel [J]. Progress in Chemistry, 2016, 28(11): 1664-1671.
[2] Wang Jun, Zhang Afang. Peptide-Mediated Supramolecular Helical Polymers [J]. Progress in Chemistry, 2015, 27(10): 1413-1424.
[3] Wang Jianwei, Song Lifeng, Zhao Jin, Yuan Xubo. Polymer Hydrogels Based on Peptide Structure [J]. Progress in Chemistry, 2015, 27(4): 373-384.
[4] Liang Yanyu, Tang Shan, Zheng Jishen. Cell-Permeable Cyclic Peptides [J]. Progress in Chemistry, 2014, 26(11): 1793-1800.
[5] Li Xiaohui*, Huang Meiling, Liu Lina, Wang Yanyun. Cyclopeptide Histone Deacetylase Inhibitors [J]. Progress in Chemistry, 2014, 26(09): 1527-1536.
[6] Yang Chuting, Han Jun, Luo Yangming, Hu Sheng, Wang Xiaolin. Metal Ion Recognition Functions Based on Cyclopeptides [J]. Progress in Chemistry, 2014, 26(09): 1537-1550.
[7] Wu Daochun, He Yanping. HCV Non-Nucleoside NS5B Polymerase Inhibitors [J]. Progress in Chemistry, 2012, 24(11): 2255-2267.
[8] . Applications of Cyclic Peptide Nanotubes [J]. Progress in Chemistry, 2010, 22(04): 648-653.
[9] Li Xiaohui1**|Li Jianxun1|Li Shirong1,Xiu Zhilong1,Nishino Norikazu2. Cyclic Peptide Histone Deacetylases Inhibitors [J]. Progress in Chemistry, 2007, 19(05): 762-768.
[10] He Jun,Ma Yuan**,Zhao Yufen. Synthesis and Applications of Peptide Dendrimer [J]. Progress in Chemistry, 2005, 17(03): 468-476.