中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (08): 1285-1291 DOI: 10.7536/PC140436 Previous Articles   Next Articles

• Review •

Hofmeister Ion Series and Its Mechanism of Action on Affecting the Behavior of Macromolecular Solutes in Aqueous Solution

Li Xiaopei1,2, Huang Kun*1, Lin Jieyuan1,2, Xu Yizhuang*3, Liu Huizhou*1   

  1. 1. Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of the Chinese Academy of Sciences, Beijing 100049, China;
    3. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51074150, 21136009) and the State Key Development Program for Basic Research of China (973 Program, No. 2012CBA01203, 2013CB632602)

PDF ( 1914 ) Cited
Export

EndNote

Ris

BibTeX

Hofmeister ion series is ubiquitous and turns up frequently in many chemical and biological processes. The explanations for its mechanism of action on target macromolecules in aqueous solutions fall into two categories. The first one states that ions affect the behavior of macromolecular solutes in the aqueous solution by interacting with water, while the other one claims that direct interactions between ions and macromolecules are the key point for comprehending the Hofmeister ion series. In this paper, research works on the two mechanisms of action are elaborately reviewed. In fact, actual solution systems are inevitably complicated by rather delicate balance of all the interactions (e.g., water-water, water-ion, water-solute, ion-solute, cation-anion) and the above mentioned two viewpoints explain the Hofmeister ion series just from one side. More work is still needed to dig into the secret behind the Hofmeister ion series.

Contents
1 Introduction
2 Indirect mechanism of action
3 Direct mechanism of action
4 Conclusion and outlook

CLC Number: 

[1] Parsons D F, Bostrom M, Lo Nostro P, Ninham B W. Phys. Chem. Chem. Phys., 2011, 13: 12352.
[2] Paterova J, Rembert K B, Heyda J, Kurra Y, Okur H I, Liu W R. J. Phys. Chem. B, 2013, 117: 8150.
[3] Bostroem M, Parsons D F, Salis A, Ninham B W, Monduzzi M. Langmuir, 2011, 27: 9504.
[4] Zhang Y J, Cremer P S. Proc. Natl. Acad. Sci., U.S.A., 2009,106: 15249.
[5] Flores S C, Kherb J, Cremer P S. J. Phys. Chem. C, 2012, 116: 14408.
[6] Pinna M C, Salis A, Monduzzi M, Ninham B W. J. Phys. Chem. B, 2005, 109: 5406.
[7] Yang Z. J. Biotechnol., 2009, 144: 12.
[8] Lo Nostro P, Ninham B W, Milani S, Fratoni L, Baglioni P. Biopolymers, 2006, 81: 136.
[9] Lo Nostro P, Ninham B W, Lo Nostro A, Pesavento G, Fratoni L, Baglioni P. Phys. Biol., 2005, 2: 1.
[10] Hey M J, Jackson D P, Yan H. Polymer, 2005, 46: 2567.
[11] Leontidis E. Curr. Opin. Colloid Interface Sci., 2002, 7: 81.
[12] Mracek A, Varhanikova J, Lehocky M, Grundelova L, Pokopcova A, Velebny V. Molecules, 2008, 13: 1025.
[13] Ninham B W. The Present State of Molecular Forces. Richtering W, Ed. Smart Colloidal Materials, 2006. 65.
[14] Schwierz N, Netz R R. Langmuir, 2012, 28: 3881.
[15] Curtis R A, Ulrich J, Montaser A, Prausnitz J M, Blanch H W. Biotechnol. Bioeng., 2002, 79: 367.
[16] Sagheer F A, Hey M J. Colloid Surf. A-Physicochem. Eng. Asp., 2004, 245: 99.
[17] Thormann E. RSC Adv., 2012, 2: 8297.
[18] Shechter I, Ramon O, Portnaya I, Paz Y, Livney Y D. Macromolecules, 2009, 43: 480.
[19] Collins K D, Washabaugh M W. Q. Rev. Biol., 1985, 18: 323.
[20] Parsegian V A. Nature, 1995, 378: 335.
[21] Perreur C, Habas J P, Lapp A, Peyrelasse J. Polymer, 2006,47: 841.
[22] Mancinelli R, Botti A, Bruni F, Ricci M A, Soper A K. Phys. Chem. Chem. Phys., 2007, 9: 2959.
[23] Frank H S, Franks F. J. Chem. Phys., 1968, 48: 4746.
[24] Baldwin R L. Biophys. J., 1996, 71: 2056.
[25] Cacace M G, Landau E M, Ramsden J J. Q. Rev. Biol., 1997, 30: 241.
[26] Florin E, Kjellander R, Eriksson J C. J. Chem. Soc., Faraday Trans., 1984, 80: 2889.
[27] Collins K D. Methods, 2004, 34: 300.
[28] Nucci N V, Vanderkooi J M. J. Mol. Liq., 2008,143: 160.
[29] Su Y L, Wei X F, Liu H Z. J. Colloid Interface Sci., 2003, 264: 526.
[30] Su Y L, Liu H Z, Wang J, Chen J Y. Langmuir, 2002, 18: 865.
[31] Zheng L L, Guo C, Wang J, Liang X F. Vib. Spectrosc., 2005, 39: 157.
[32] Ma J H, Guo C, Tang Y L, Wang J, Zheng L, Liang X F. Langmuir, 2007, 23: 3075.
[33] Omta A W, Kropman M F, Woutersen S, Bakker H J. Science, 2003, 301: 347.
[34] Omta A W, Kropman M F, Woutersen S, Bakker H J. J. Chem. Phys., 2003, 119: 12457.
[35] Batchelor J D, Olteanu A, Tripathy A, Pielak G J. J. Am. Chem. Soc., 2004, 126: 1958.
[36] Gurau M C, Lim S M, Castellana E T, Albertorio F, Kataoka S, Cremer P S. J. Am. Chem. Soc., 2004, 126: 10522.
[37] Chen X, Yang T, Kataoka S, Cremer P S. J. Am. Chem. Soc., 2007,129: 12272.
[38] Gragson D E, McCarty B M, Richmond G L. J. Am. Chem. Soc., 1997, 119: 6144.
[39] Zhang Y J, Furyk S, Bergbreiter D E, Cremer P S. J. Am. Chem. Soc., 2005, 127: 14505.
[40] Zhang Y J, Furyk S, Sagle L B, Cho Y, Bergbreiter D E, Cremer P S. J. Phys. Chem. C, 2007, 111: 8916.
[41] Cho Y, Zhang Y J, Christensen T, Sagle L B, Chilkoti A, Cremer P S. J. Phys. Chem. B, 2008, 112: 13765.
[42] Deyerle B A, Zhang Y J. Langmuir, 2011, 27: 9203.
[43] Gibb C L D, Gibb B C. J. Am. Chem. Soc., 2011, 133: 7344.
[44] Finney J L, Bowron D T. Curr. Opin. Colloid Interface Sci., 2004, 9: 59.
[45] Tasaki K. Comput. Theor. Polym. Sci., 1999, 9: 271.
[46] Florin E. Macromolecules, 1985, 18: 360.
[47] Xie W, Liu C, Yang L, Gao Y. Sci. China Chem., 2014, 57: 36.
[48] Marcus Y. Chem. Rev., 2009, 109: 1346.
[49] Marcus Y. Pure Appl. Chem., 2010, 82: 1889.
[50] Zhou H X. Proteins: Struct., Funct., Bioinf., 2005, 61: 69.
[51] Bostrom M, Kunz W, Ninham B W. Langmuir, 2005, 21: 2619.
[52] Bostrom M, Williams D R M, Ninham B W. Langmuir, 2001, 17: 4475.
[53] Bostrom M, Williams D R M, Ninham B W. Langmuir, 2002, 18: 8609.
[54] Boström M, Williams D R M, Ninham B W. Langmuir, 2002, 18: 6010.
[55] Ninham B W, Yaminsky V. Langmuir, 1997, 13: 2097.
[56] Huang H, Ruckenstein E. J. Phys. Chem. Lett., 2013, 4: 3725.
[57] Manciu M, Ruckenstein E. Langmuir, 2002, 18: 5178.

[1] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
[2] Ying Xu, Tingting Gao, Qixiao Wang, Yang Qu, Hongfei Liu, Yuanrong Xin. Preparation Technologies of the Polymer-Based MONOLITH Material and Its Application as Stationary Phase of Affinity Chromatography for the Separation of Biological Macromolecules [J]. Progress in Chemistry, 2018, 30(8): 1112-1120.
[3] Xiangming Na, Weiqing Zhou, Juan Li, Zhiguo Su, Guanghui Ma. Preparation and Application of Porous Polymer Microspheres in Virus-Like Particles Purification [J]. Progress in Chemistry, 2018, 30(1): 5-13.
[4] Xiong Xingquan*, Jiang Yunbing. Reversible Diels-Alder Reaction [J]. Progress in Chemistry, 2013, 25(06): 999-1011.
[5] Pei Fei, He Yufeng, Li Xiaoxiao, Wang Rongmin*, Li Gang, Zhao Tingting. SOD Mimics Based on Macromolecules [J]. Progress in Chemistry, 2013, 25(0203): 340-349.
[6] Bai Yang, Fan Xiaodong*, Mu Chengguang, Yang Zhen, Wang Dan, Zhang Haitao. Cyclodextrin-Based Topological Macromolecules [J]. Progress in Chemistry, 2013, 25(0203): 363-369.
[7] Qiu Suyan, Gao Sen, Lin Zhenyu, Chen Guonan. Advances in Click Chemistry [J]. Progress in Chemistry, 2011, 23(4): 637-648.
[8] Chen Mengjie, Yao Jinrong, Shao Zhengzhong, Chen Xin. Biomacromolecule-based Nanoparticle Drug Carriers [J]. Progress in Chemistry, 2011, 23(01): 202-212.
[9] . Characterization of Polymers by High Performance Liquid Chromatography [J]. Progress in Chemistry, 2010, 22(04): 706-712.
[10] Ping Qu Hua He Xuhui Liu . Antitumor Activity and the Mechanism of Rhodium Complexes [J]. Progress in Chemistry, 2006, 18(12): 1646-1651.
[11] Lingzhi Liu,Zhihong Liu*, Zhike He,Ruxiu Cai. Quantum Dots:The New Development of FRET [J]. Progress in Chemistry, 2006, 18(0203): 337-343.
[12] Yuan Jianjun,Zhai Jin,Jiang Lei**. Hierarchical Self-Assembly of Inorganic Nanoparticles Mediated by Organic Macromolecules [J]. Progress in Chemistry, 2004, 16(04): 500-.
[13] Li Wei**,Han Yongcai,Zhang Jinli. Advances in Computer Simulation of Macromolecule Self-assembly [J]. Progress in Chemistry, 2004, 16(03): 431-.
[14] Huang Kaixun**,Liu Qiong,Yang Xiangliang,Xu Huibi. Interactions between Small Inorganic Molecules and Biological Macromolecules in Cell [J]. Progress in Chemistry, 2004, 16(02): 308-.
[15] Hou Zhaosheng,Zhang Qizhen**,Li Guiying,Zhu Minggang. Progress in Study of Metallodendrimer [J]. Progress in Chemistry, 2002, 14(06): 469-.