中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (09): 1570-1585 DOI: 10.7536/PC140420 Previous Articles   Next Articles

• Review •

Atomic-Scale Insights into the Oxygen Ionic Transport Mechanisms of Oxygen Electrode in Solid Oxide Cells:A Review

Liu Shaoming1,2, Yu Bo*2, Zhang Wenqiang2, Zhu Jianxin3, Zhai Yuchun1, Chen Jing2   

  1. 1. School of Materials and Metallurgy, Northeastern University, Shenyang 110819, China;
    2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
    3. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the“Tsinghua-MIT-Cambridge” Low Carbon Energy University Alliance Seed Fund Program (No.2011LC004), the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. ZX06901), the National Natural Science Foundation of China (No. 21273128, 51202123) and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT13026)

PDF ( 2142 ) Cited
Export

EndNote

Ris

BibTeX

As a new generation of energy conversion devices, solid oxide fuel cells (SOFC) and solid oxide electrolysis cells (SOEC) are of great importance with the advantage of highly efficient energy conversion in a clean way. For the commercialization of SOFC and SOEC technologies, operation at the intermediate-low temperature (IT) is the current major research direction all over the world, which are beneficial for the operation of SOFC and SOEC more durably and economically. The key point is how to improve the oxygen reduction reaction (ORR) or oxygen evolution reaction (OER) activity of oxygen electrodes. In this review, the important roles of atomic-scale molecular simulation and in-situ experimental characterization are mainly illustrated to provide insight and understanding on the oxygen transport mechanism analysis. These fundamental studies could put forward the progress from traditional materials and structures to novel designs and concepts. The recent R&D oxygen electrodes of mixed ionic electronic conducting (MIEC) materials, the corresponding ion migration paths, anisotropic structures and lattice dynamics are summarized in detail. The current advanced research methods and characterizations are introduced focusing on the in-situ X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) for probing the surface chemical composition and structure of materials. With in-situ methods, a several nanometers to tens of nanometers structure of the dense film could be visualized that made the study of the formation and migration of charged defects of oxygen electrode material feasible. Oxygen transport mechanisms in the traditional materials and novel materials at atomic scale are analyzed by the results of density functional theory (DFT) calculations and molecular dynamics (MD) simulations. Furthermore, the research progress of oxygen electrodes at INET in Tsinghua University is briefly introduced.

Contents
1 Introduction
2 Oxygen electrode materials
2.1 Mixed ionic electronic conductor (MIEC) oxygen electrode
2.2 Perovskite oxides
2.3 Ruddlesden-popper series of layered oxides
2.4 Layered double perovskites oxides
3 The current research methods
3.1 Pulsed laser deposition (PLD)
3.2 Thin film characterization
3.3 Computational methods
4 Oxygen transport mechanisms in oxygen electrode
4.1 Oxygen bulk diffusion in oxygen electrode
4.2 Oxygen surface exchange in oxygen electrode
5 The research progress of INET in Tsinghua University on the oxygen electrode of the solid oxide cells
6 Conclusions

CLC Number: 

[1] British Petroleum Company. Statistical Review of World Energy, 2013.
[2] Minh N Q, Mogensen M. The Electrochemical Society Interface, 2013, 22(4): 55.
[3] Ni M, Leung M K H, Leung D Y C. Int. J. Hydrogen. Energ., 2008, 33(9): 2337.
[4] Wachsman E D, Marlowe C A, Lee K T. Energy & Environmental Science, 2012, 5: 5498.
[5] Yang C, Yang Z, Jin C, Xiao G L, Chen F L, Han M F. Adv. Mater., 2012, 24: 1439.
[6] Steele B C H, Heinzel A. Nature, 2001, 414: 345.
[7] Jacobson A J. Chem. Mater., 2009, 22: 660.
[8] Steele B C H. Solid State Ionics, 2000, 129: 95.
[9] Zheng Y, Ran R, Gu H X, Cai R, Shao Z P. J. Power Sources, 2008, 185: 641.
[10] Zheng Y, Zhang C M, Ran R, Cai R, Shao Z P, Farrusseng D. Acta Mater., 2009, 57: 1165.
[11] Zheng Y, Ran R, Shao Z P. J. Phys. Chem., 2008, 112: 18690.
[12] Tarancón A, Burriel M, Santiso J, Skinner S J, Kilner J A. J. Mater. Chem., 2010, 20: 3799.
[13] Frayret C, Villesuzanne A, Pouchard M. Chem. Mater., 2005, 17: 6538.
[14] Kim G, Wang S, Jacobson A J, Reimus L, Brodersen P, Mims C A. J. Mater. Chem., 2007, 17: 2500.
[15] Tarancón A, Skinner S J, Chater R J, Hernádez-Ramírez F, Kilner J A. J. Mater. Chem., 2007, 17: 3175.
[16] Burriel M, Garcia G, Santiso J, Kilner J A, Chater R J, Skinner S J. J. Mater. Chem., 2008, 18: 416.
[17] Yashima M, Enoki M, Wakita T, Ali R, Matsushita Y, Izumi F, Ishihara T. J. Am. Chem. Soc., 2008, 130: 2762.
[18] Chroneos A, Vovk R V, Goulatis I L, Goulatis L I. J. Alloys Compd., 2010, 494: 190.
[19] Galina M Z, Mazo G N, Ivanov-Schitz A K. Crystallogr. Rep., 2010, 55(2): 262.
[20] Wolff H, Dronskowski R. Journal of Computational Chemistry, 2008, 29(13): 2260.
[21] Savvin S N, Mazo G N, Ivanov-Schitz A K. Crystallogr. Rep., 2008, 53: 291.
[22] Parfitt D, Chroneos A, Kilner J A, Grimes R W. Phys. Chem. Chem. Phys., 2010, 12: 6834.
[23] Schwingenschlögl U, Chroneos A, Schuster C, Grimes R W. Appl. Phys. Lett., 2010, 96: 242107.
[24] Chroneos A, Grimes R W, Bracht H. J. Appl. Phys., 2009, 105: 016102.
[25] Adler S B. Solid State Ionics, 1998, 111: 125.
[26] Adler S B. Chem. Rev., 2004, 104: 4791.
[27] Adler S B, Lane J A, Steele B C H. J. Electrochem. Soc., 1996, 143: 3554.
[28] Baumann F S. Doctoral Dissertation of Max Planck Institute, Stuttgart, Germany, 2006.
[29] Schmalzried H. Chemical Kinetics of Solids. Weinheim: VCH Verlagsgesellschaft, 1995.
[30] Rickert H. Electrochemistry of Solids. Berlin: Springer-Verlag, 1982.
[31] Kilner J A. Solid State Ionics, 2000, 129: 13.
[32] Jorgensen M J, Primdahl S, Mogensen M. Electrochim. Acta, 1999, 44: 4195.
[33] Ostergard M J L, Clausen C, Bagger C, Mogensen M. Electrochim. Acta, 1995, 40: 1971.
[34] Lei Z, Zhu Q, Zhao L. J. Power Sources, 2006, 161: 1169.
[35] Jiang S P, Wang W. J. Electrochem. Soc., 2005, 152: A1398.
[36] Zhou W, Shao Z P, Ran R, Gu H X, Jin W Q, Xu N P. J. Am. Ceram. Soc., 2008, 91: 1155.
[37] Zhou W, Shao Z P, Ran R, Jin W Q, Xu N P. Chem. Commun., 2008, 44: 5791.
[38] Zhou W, Shao Z P, Ran R, Cai R. Electrochem. Commun., 2008, 10: 1647.
[39] Colomer M T, Steele B C H, Kilner J A. Solid State Ionics, 2003, 147: 41.
[40] Bae J M, Steele B C H. Solid State Ionics, 1998, 106: 247.
[41] Steele B C H, Bae J M. Solid State Ionics, 1998, 106: 255.
[42] Waller D, Lane J A, Kilner J A, Steele B C H. Mater. Lett., 1996, 27: 225.
[43] Waller D, Lane J A, Kilner J A, Steele B C H. Solid State Ionics, 1996, 86/88: 767.
[44] Kawada T, Masuda K, Suzuki J, Kaimai A, Kawamura K, Nigara Y, Mizusaki J, Yugami H, Arashi H, Sakai N, Yokokawa H. Solid State Ionics, 1999, 121: 271.
[45] Sase M, Ueno D, Yashiro K, Kaimai A, Kawada T, Mizusaki J. J. Phys. Chem. Solids, 2005, 66: 343.
[46] Bouwmeester H J M, Den Otter M W, Boukamp B A. J. Solid State Electrochem., 2004, 8: 599.
[47] De Souza R A, Kilner J A. Solid State Ionics, 1999, 126: 153.
[48] De Souza R A, Kilner J A. Solid State Ionics, 1998, 106: 175.
[49] Hibino T, Hashimoto A, Inoue T, Tokuno J, Yoshida S, Sano M. Science, 2000, 288: 2031.
[50] Xia C R, Chen F L, Liu M L. Electrochem. Solid-State Lett., 2001, 4: A52.
[51] Xia C R, Liu M L. Solid State Ionics, 2001, 144: 249.
[52] Dusastre V, Kilner J A. Solid State Ionics, 1999, 126: 163.
[53] Shao Z P, Haile S M. Nature, 2004, 431: 170.
[54] Shao Z P, Haile S M, Ahn J, Ronney P D, Zhan Z L, Barnett S A. Nature, 2005, 435: 795.
[55] Knibbe R, Hauch A, Hjelm J, Ebbesen Sune D, Mogensen M. Durability of Solid Oxide Cells: Green, 2011, 1(2): 141.
[56] Chroneos A, Yildiz B. Energy Environ. Sci., 2011, 4: 2774.
[57] Shao Z P, Xiong G X, Tong J H, Dong H, Yang W S. Purif. Sep. Tech., 2001, 25: 419.
[58] Fisher C A J, Yoshiya M, Iwamoto Y, Ishii J, Asanuma M, Yabuta K. Solid State Ionics, 2007, 177: 3425.
[59] Suntivich J, May K J, Gasteiger H A, Goodenough J B, Yang S H. Science, 2011, 9: 1383.
[60] Naumovich E N, Kharton V V. Journal of Molecular Structure: Theochem, 2010, 946: 57.
[61] Li Q, Zhao H, Huo L, Sun L P, Cheng X L, Grenier J C. Electrochemistry Communications, 2007, 9: 1508.
[62] Boehm E, Bassat J M, Dordor P, Mauvy F, Grenier J C, Stevens Ph. Solid State Ionics, 2005, 176: 2717.
[63] Kilner J A, Shaw C K M. Solid State Ionics, 2002, 154/155: 523.
[64] Chroneos A, Parfitt D, Kilner J A, Grimes R W. J. Mater. Chem., 2010, 20: 266.
[65] Huang Y H, Dass R I, Xing Z L, Goodenough J B. Science, 2006, 312: 254.
[66] Maignan A, Martin C, Pelloquin D, Nguyen N, Raveau B. J. Solid State Chem., 1999, 142: 247.
[67] Kim G, Wang S, Jacobson A J, Reimus L, Brodersen P, Mims C A. J. Mater. Chem., 2007, 17: 2500.
[68] Burriel M, Pea-Martínez J, Chater R J, Fearn S, Berenov A V, Skinner S J, Kilner J A. Chem. Mater., 2012, 24: 613.
[69] Seymour I D, Tarancón A, Chroneos A, Parfitt D, Kilner J A, Grimes R W. Solid State Ionics, 2012, 216: 41.
[70] Parfitt D, Chroneos A, Tarancón A, Kilner J A. J. Mater. Chem., 2011, 21: 2183.
[71] Catlow C R A. Computer Modelling in Inorganic Crystallography, San Diego: Academic Press, 1997.
[72] Koch W, Holthausen M C. A Chemist's Guide to Density Functional Theory. Weinheim: Wiley-VCH, 2001.
[73] Buckingham R A. Proc. R. Soc. London Ser. A, 1938, 168: 264.
[74] Grimes R W, Busker G, McCoy M A, Chroneos A, Kilner J A, Chen S P. Ber. Bunsen-Ges., 1997, 101: 1204.
[75] Busker G, Chroneos A, Grimes R W, Chen I W. J. Am. Ceram. Soc., 1999, 82: 1553.
[76] Den Otter M W, van der Haar L M, Bouwmeester H J M. Solid State Ionics, 2000, 134: 259.
[77] Richter J, Holtappels P, Graule T, Nakamura T, Gauckler L J. Monatsh. Chem., 2009, 140: 985.
[78] Bogicevic A, Wolverton C. Phys. Rev. B: Condens. Matter Mater. Phys., 2003, 67: 024106.
[79] Kushima A, Yildiz B. J. Mater. Chem., 2010, 20: 4809.
[80] Laidler K, King C. J. Phys. Chem., 1983, 87: 2657.
[81] Bouwmeester H J M, Burggraaf A J. The CRC Handbook of the Solid State Electrochemistry (Gellings P J, Bouwmeester H J M, Eds.). Boca Raton: CRC Press, 1997.
[82] Ten Elshof J E, Lankhorst M H R, Bouwmeester H J M. J. Electrochem. Soc., 1997, 144(3): 1060.
[83] Wærnhus I. Doctoral Dissertation of Norwegian University of Science and Technology, 2003.
[84] Van der Haar L M, den Otter M W, Morskate M, Bouwmeester H J M, Verweij H. Journal of the Electrochemical Society, 2002, 149: J41.
[85] Wang S, Verma A, Yang Y L, Jacobsson A J, Abeles B. Solid State Ionics, 2001, 140: 125.
[86] Kharton V V, Viskup A P, Naumovich E N, Marques F M B. J. Mater. Chem., 1999, 9: 2623.
[87] Ganeshananthan R, Virkar A V. J. Electrochem. Soc., 2005, 152(8): A1620.
[88] Lee W Y, Han J W, Chen Y, Cai Z H, Yildiz B. J. Am. Chem. Soc., 2013, 135: 7909.
[89] Kubicek M, Cai Z H, Ma W, Yildiz B, Hutter H, Fleig J. J. Am. Chem. Soc., 2013, 7(4): 3276.
[90] 张文强(Zhang W Q), 于波(Yu B), 陈靖(Chen J), 徐景明( Xu J M). 化学进展(Progress in Chemistry), 2008, 20( 5) : 778.
[91] 王振(Wang Z), 于波(Yu B), 张文强(Zhang W Q), 陈靖(Chen J), 徐景明(Xu J M). 化学进展(Progress in Chemistry), 2013, 25(7):1229.
[92] Stoots C M, O'Brien J E, Condie K G, Hartvigsen J J. Int. J. Hydrogen Energy, 2010, 35: 4861.

[1] Li Peng, Sun Yanping* . Positive Electrodes of Non-Aqueous Rechargeable Lithium-Oxygen Batteries [J]. Progress in Chemistry, 2012, 24(12): 2457-2471.
[2] Chen Jianying, Zeng Fanrong, Wang Shaorong, Chen Wei, Zheng Xuebin. The Key Materials and the Stacks of SOFCs [J]. Progress in Chemistry, 2011, 23(0203): 463-469.
[3] Yuan Xianxia Xia Xiaoyun Zeng Xin Zhang Huijuan Ma Zifeng. Catalysts for Oxygen Electrode of Low Temperature Fuel Cells [J]. Progress in Chemistry, 2010, 22(01): 19-31.
[4] Zhu Xiaodong, Sun Kening**,Zhou Derui. Preparation and Mechanism of CeO2 Interlayer in Stabilized ZrO2-Based SOFC [J]. Progress in Chemistry, 2007, 19(11): 1710-1717.
[5] Shidong Song,Huamin Zhang*,Xiaoping Ma,Yining Zhang,Baolian Yi. Unitized Regenerative Fuel Cells [J]. Progress in Chemistry, 2006, 18(10): 1375-1380.