中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (08): 1275-1284 DOI: 10.7536/PC140350 Previous Articles   Next Articles

• Review •

Applications of Regulation of Protein Adsorption Using PNIPAAm Modified Surfaces

Yu Qian, Chen Hong*   

  1. College of Chemistry, Chemical Engineering and Materials Science of Soochow University, Suzhou 215123, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.21334004) and the National Science Fund for Distinguished Young Scholars (No. 21125418)

PDF ( 1031 ) Cited
Export

EndNote

Ris

BibTeX

Control over the adsorption of proteins on surfaces according to the specific requirements of different fields is of crucial importance for various applications including implanted devices, biosensors, tissue engineering, and separation sciences. Surfaces modified by poly (N-isopropylacrylamide) (PNIPAAm) are capable of reversibly altering their properties in response to the change of environmental temperature, providing possibility to regulate protein adsorption on surfaces. In recent decades, considerable attentions have been paid to investigating protein adsorption on PNIPAAm modified surfaces under different temperatures using various characterization methods, and trying to understand the mechanism and influence factors in molecular level. In this paper, the recent progress on studies of protein adsorption on PNIPAAm modified surfaces are reviewed. It is found that when the thickness of PNIPAAm layer is within a certain range, PNIPAAm modified surfaces exhibit thermo-responsivity of protein adsorption, which can be used in applications of protein purification and separation as well as biosensors. On the other hand, when the thickness of PNIPAAm layer is beyond a critical thickness, PNIPAAm modified surfaces show good resistance to plasma proteins, making them beneficial for applications as hemocompatible surfaces. In the end, the directions of future development on regulation of protein adsorption using PNIPAAm modified surfaces are proposed.

Contents
1 Introduction
2 PNIPAAm modified surfaces
2.1 Preparation of PNIPAAm modified surfaces
2.2 Conformational changes of PNIPAAm grafted on surfaces
3 Studies on protein adsorption on PNIPAAm modified surfaces
3.1 Methods of characterization of protein adsorption
3.2 Mechanisms and influence factors of protein adsorption
4 Applications of PNIPAAm modified surfaces on regulation of protein adsorption
4.1 Purification and separation of protein
4.2 Biosensors
4.3 Hemocompatible surfaces
5 Conclusion and outlook

CLC Number: 

[1] Chen H, Yuan L, Song W, Wu Z, Li D. Prog. Polym. Sci., 2008, 33: 1059.
[2] Tsapikouni T S, Missirlis Y F. Mater. Sci. Eng. B, 2008, 152: 2.
[3] Szott L M, Horbett T A. Curr. Opin. Chem. Biol., 2011, 15: 683.
[4] Banerjee I, Pangule R C, Kane R S. Adv. Mater., 2011, 23: 690.
[5] Horbett T A. Colloids Surf. B, 1994, 2: 225.
[6] Jain P, Baker G L, Bruening M L. Annu. Rev. Anal. Chem., 2009, 2: 387.
[7] Yuan L, Yu Q, Li D, Chen H. Macromol. Biosci., 2011, 11: 1031.
[8] Li M, Neoh K G, Xu L Q, Wang R, Kang E T, Lau T, Olszyna D P, Chiong E. Langmuir, 2012, 28: 16408.
[9] Li D, Zheng Q, Wang Y, Chen H. Polym. Chem., 2013, 5: 14.
[10] Mendes P M. Chem. Soc. Rev., 2008, 37: 2512.
[11] Cole M A, Voelcker N H, Thissen H, Griesser H J. Biomaterials, 2009, 30: 1827.
[12] Schild H G. Prog. Polym. Sci., 1992, 17: 163.
[13] Ista L K, Lopez G P. J. Ind. Microbiol. Biotechnol., 1998, 20: 121.
[14] Cho E C, Kim Y D, Cho K. Polymer, 2004, 45: 3195.
[15] Cunliffe D, Alarcon C D, Peters V, Smith J R, Alexander C. Langmuir, 2003, 19: 2888.
[16] Yakushiji T, Sakai K, Kikuchi A, Aoyagi T, Sakurai Y, Okano T. Langmuir, 1998, 14: 4657.
[17] Heinz P, Bretagnol F, Mannelli I, Sirghi L, Valsesia A, Ceccone G, Gilliland D, Landfester K, Rauscher H, Rossi F. Langmuir, 2008, 24: 6166.
[18] Sugiura S, Imano W, Takagi T, Sakai K, Kanamori T. Biosens. Bioelectron., 2009, 24: 1135.
[19] Wu Z, Chen H, Huang H, Zhao T, Liu X, Li D, Yu Q. Macromol. Biosci., 2009, 9: 1165.
[20] Li L, Zhu Y, Li B, Gao C. Langmuir, 2008, 24: 13632.
[21] Barbey R, Lavanant L, Paripovic D, Schuüwer N, Sugnaux C, Tugulu S, Klok H A. Chem. Rev., 2009, 109: 5437.
[22] Cheng X H, Canavan H E, Stein M J, Hull J R, Kweskin S J, Wagner M S, Somorjai G A, Castner D G, Ratner B D. Langmuir, 2005, 21: 7833.
[23] Balamurugan S, Mendez S, Balamurugan S S, O'Brien M J, Lopez G P. Langmuir, 2003, 19: 2545.
[24] Zhang G. Macromolecules, 2004, 37: 6553.
[25] Liu G, Cheng H, Yan L, Zhang G. J. Phys. Chem. B, 2005, 109: 22603.
[26] Canavan H E, Graham D J, Cheng X H, Ratner B D, Castner D G. Langmuir, 2007, 23: 50.
[27] Cole M A, Jasieniak M, Thissen H, Voelcker N H, Griesser H J. Anal. Chem., 2009, 81: 6905.
[28] Kurkuri M D, Nussio M R, Deslandes A, Voelcker N H. Langmuir, 2008, 24: 4238.
[29] 于谦 (Yu Q), 张燕霞 (Zhang Y X), 李鑫 (Li X), 徐亚骏 (Xu Y J), 陈红 (Chen H). 高分子学报 (Acta Polym. Sin.), 2011, (5): 537.
[30] Yu Q, Zhang Y, Chen H, Zhou F, Wu Z, Huang H, Brash J L. Langmuir, 2010, 26: 8582.
[31] Teare D O H, Barwick D C, Schofield W C E, Garrod R P, Beeby A, Badyal J P S. J. Phys. Chem. B, 2005, 109: 22407.
[32] Alf M E, Hatton T A, Gleason K K. Langmuir, 2011, 27: 10691.
[33] Yu Q, Zhang Y, Chen H, Wu Z, Huang H, Cheng C. Colloids Surf. B, 2010, 76: 468.
[34] Zhao T, Chen H, Zheng J, Yu Q, Wu Z, Yuan L. Colloids Surf. B, 2011, 85: 26.
[35] Yu Q, Li X, Zhang Y, Yuan L, Zhao T, Chen H. RSC Adv., 2011, 1: 262.
[36] Cho E C, Kim Y D, Cho K. J. Colloid Interface Sci., 2005, 286: 479.
[37] Cho E C, Kim D H, Cho K. Langmuir, 2008, 24: 9974.
[38] Jeon S I, Lee J H, Andrade J D, de Gennes P G. J. Colloid Interface Sci., 1991, 142: 149.
[39] Chen S, Zheng J, Li L, Jiang S. J. Am. Chem. Soc., 2005, 127: 14473.
[40] Halperin A, Kröger M. Macromolecules, 2011, 44: 6986.
[41] Zhu X, Yan C, Winnik F M, Leckband D. Langmuir, 2007, 23: 162.
[42] 于谦 (Yu Q), 张燕霞 (Zhang Y X), 徐亚骏 (Xu Y J), 陈红 (Chen H). 材料导报 (Mater. Rev.), 2010, 24: 25.
[43] Xue C, Choi B C, Choi S, Braun P V, Leckband D E. Adv. Funct. Mater., 2012, 22: 2394.
[44] Xue C, Yonet-Tanyeri N, Brouette N, Sferrazza M, Braun P V, Leckband D E. Langmuir, 2011, 27: 8810.
[45] Halperin A, Fragneto G, Schollier A, Sferrazza M. Langmuir, 2007, 23: 10603.
[46] Halperin A. Langmuir, 1999, 15: 2525.
[47] Yin Z Z, Zhang J J, Jiang L P, Zhu J J. J. Phys. Chem. C, 2009, 113: 16104.
[48] Huber D L, Manginell R P, Samara M A, Kim B I, Bunker B C. Science, 2003, 301: 352.
[49] Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T. Biomacromolecules, 2008, 9: 1340.
[50] Nagase K, Kumazaki M, Kanazawa H, Kobayashi J, Kikuci A, Akiyama Y, Annaka M, Okano T. ACS Appl. Mater. Interfaces, 2010, 2: 1247.
[51] Nagase K, Yuk S F, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T. J. Mater. Chem., 2011, 21: 2590.
[52] Malmstadt N, Yager P, Hoffman A S, Stayton P S. Anal. Chem., 2003, 75: 2943.
[53] Malmstadt N, Hoffman A S, Stayton P S. Lab Chip, 2004, 4: 412.
[54] Hoffman J M, Ebara M, Lai J J, Hoffman A S, Folch A, Stayton P S. Lab Chip, 2010, 10: 3130.
[55] Shamim N, Hong L, Hidajat K, Uddin M S. J. Colloid Interface Sci., 2006, 304: 1.
[56] Shamim N, Hong L, Hidajat K, Uddin M S. Colloids Surf. B, 2007, 55: 51.
[57] Shamim N, Liang H, Hidajat K, Uddin M S. J. Colloid Interface Sci., 2008, 320: 15.
[58] Meng T, Xie R, Chen Y C, Cheng C J, Li P F, Ju X J, Chu L Y. J. Membr. Sci., 2010, 349: 258.
[59] Wang H, Wang Y, Yuan L, Wang L, Yang W, Wu Z, Li D, Chen H. Nanotechnology, 2013, 24: 105101.
[60] Yu Q, Shivapooja P, Johnson L M, Tizazu G, Leggett G J, Lopez G P. Nanoscale, 2013, 5: 3632.
[61] Song S Y, Choi H G, Hong J W, Kim B W, Sim S J, Yoon H C. Colloids Surf. A, 2008, 313: 504.
[62] Lee D S, Choi H G, Chung K H, Lee B Y, Pyo H B, Yoon H C. ETRI J., 2007, 29: 667.
[63] Ketelson H A. US 7485607 B2,2009.
[64] Chen L, Liu M, Bai H, Chen P, Xia F, Han D, Jiang L. J. Am. Chem. Soc., 2009, 131: 10467.

[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[5] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[6] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[7] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[8] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
[9] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[10] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[11] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[12] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.
[13] Ping Liu, Jing Wang, Hongye Hao, Yunfan Xue, Junjie Huang, Jian Ji. Photochemical Surface Modification of Biomedical Materials [J]. Progress in Chemistry, 2019, 31(10): 1425-1439.
[14] Dongdong Zha, Bin Guo, Bengang Li, Peng Yin, Panxin Li. Chemical and Physical Mechanism of Water Resistance for Thermoplastic Starch [J]. Progress in Chemistry, 2019, 31(1): 156-166.
[15] Wang Yali, Li Zhen, Liu Zhihong. Water Solubilization of Upconversion Nanoparticles [J]. Progress in Chemistry, 2016, 28(5): 617-627.