中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (08): 1317-1328 DOI: 10.7536/PC140341 Previous Articles   Next Articles

• Review •

Advances of Host-Guest Supramolecular Vesicles and Their Properties in Drug Delivery

Ma Mingfang, Xing Pengyao, Li Shangyang, Chu Xiaoxiao, Wang Bo, Hao Aiyou*   

  1. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
  • Received: Revised: Online: Published:
PDF ( 1913 ) Cited
Export

EndNote

Ris

BibTeX

The host-guest supramolecular vesicles are attracting more and more attention with the emergence of new host molecules. Cyclodextrin, calixarene, cucurbituril and pillararene can all form supramolecular amphiphiles with specific guest molecules based on host guest recognition, the obtained supramolecular amphiphiles can further self-assembled into the host-guest supramolecular vesicles under mild condition. The host-guest supramolecular vesicles is a sensitively responsive vesicular system, which possesses the advantages of simple preparation, good biocompatibility and controllable self-assembly. This vesicular system has good responsiveness to external stimuli, which can realize drug molecules controllable delivery and release, making it a unique drug delivery system. According to the development of the host molecules recently, the advances of cyclodextrin, calixarene, cucurbituril and pillararene host-guest supramolecular vesicles are introduced firstly. Then the drug delivery ways of this supramolecular vesicles system are summarized, drug molecules can not only be loaded in the cavities and membranes of the host-guest supramolecular vesicles, but also can be loaded in the cavities of the host molecules. Meanwhile, the stimuli (such as pH, ions, redox potential, enzyme, temperature and competitive guests) responsiveness of this drug loaded host-guest supramolecular vesicles is summed up. Finally, the prospects are pointed out based on the current development of this system.

Contents
1 Introduction
2 Different host-guest supramolecular vesicles
2.1 Host-guest supramolecular vesicles of cyclodextrin
2.2 Host-guest supramolecular vesicles of calixarene
2.3 Host-guest supramolecular vesicles of cucurbituril
2.4 Host-guest supramolecular vesicles of pillararene
3 Drug delivery ways of the host-guest supramolecular vesicles
3.1 Drugs loaded in the cavities of the host-guest supramolecular vesicles
3.2 Drugs loaded in the membranes of the host-guest supramolecular vesicles
4 Different stimuli responsiveness of the drug loaded host-guest supramolecular vesicles
4.1 pH response
4.2 Ion response
4.3 Redox response
4.4 Enzyme response
4.5 Temperature response
4.6 Competitive guests response
5 Summary and prospects

CLC Number: 

[1] Voskuhl J, Ravoo B J. Chem. Soc. Rev., 2009, 38: 495.
[2] 张华承(Zhang H C), 郝爱友(Hao A Y), 李干佐(Li G Z), 孙宏元(Sun H Y). 有机化学(Chinese Journal of Organic Chemistry), 2009, 29(2): 166.
[3] 辛飞飞(Xin F F), 张华承(Zhang H C), 孙涛(Sun T), 孔丽(Kong L), 李月明(Li Y M), 郝爱友(Hao A Y). 化学进展(Progress in Chemistry), 2012, 24(2/3): 414.
[4] Stano P, D'Aguanno E, Bolz J, Fahr A, Luisi P L. Angew. Chem. Int. Ed., 2013, 52: 13397.
[5] Kumar M, Habel J, Shen Y X, Meier W P, Walz T. J. Am. Chem. Soc., 2012, 134: 18631.
[6] Wang L, Chierico L, Little D, Patikarnmonthon N, Yang Z, Azzouz M, Madsen J, Armes S P, Battaglia G. Angew. Chem. Int. Ed., 2012, 51: 11122.
[7] Chen K J, Liang H F, Chen H L, Wang Y, Cheng P Y, Liu H L, Xia Y, Sung H W. ACS Nano, 2013, 7: 438.
[8] Spulber M, Najer A, Winkelbach K, Glaied O, Waser M, Pieles U, Meier W, Bruns N. J. Am. Chem. Soc., 2013, 135: 9204.
[9] Zhang S Y, Zhao Y. ACS Nano, 2011, 5: 2637.
[10] Wang M F, Mohebbi A R, Sun Y M, Wudl F. Angew. Chem. Int. Ed., 2012, 51: 6920.
[11] Wang Y P, Han P, Xu H P, Wang Z Q, Zhang X, Kabanov A V. Langmuir, 2010, 26: 709.
[12] Wang C, Yin S C, Chen S L, Xu H P, Wang Z Q, Zhang X. Angew. Chem. Int. Ed., 2008, 47: 9049.
[13] Tao W, Liu Y, Jiang B B, Yu S R, Huang W, Zhou Y F, Yan D Y. J. Am. Chem.Soc., 2012, 134: 762.
[14] Iyer A K, Khaled G, Fang J, Maeda H. Drug Discov. Today, 2006, 11: 812.
[15] Panyam J, Labhasetwar V. Adv. Drug Deliv. Rev., 2012, 64: 61.
[16] Yao Y, Xue M, Chen J Z, Zhang M M, Huang F H. J. Am. Chem. Soc., 2012, 134: 15712.
[17] Yu G C, Ma Y J, Han C Y, Yao Y, Tang G P, Mao Z W, Gao C Y, Huang F H. J. Am. Chem. Soc., 2013, 135: 10310.
[18] Wang Y X, Guo D S, Cao Y, Liu Y. RSC Adv., 2013, 3: 8058.
[19] Yang Y, Zhang Y M, Chen Y, Chen J T, Liu Y. J. Med. Chem., 2013, 56: 9725.
[20] 童林荟(Tong L H). 环糊精化学——基础与应用(Cyclodextrin Chemistry——Foundation and Application). 北京: 科学出版社(Beijing: Science Press), 2001. 10.
[21] Szejtli J. Chem. Rev., 2005, 98: 1743.
[22] Jing B, Chen X, Wang X D, Yang C J, Xie Y Z, Qiu H Y. Chem. Eur. J., 2007, 13: 9137.
[23] Wang Y P, Ma N, Wang Z Q, Zhang X. Angew. Chem. Int. Ed., 2007, 46: 2823.
[24] Zhang H C, Shen J, Liu Z N, Hao A Y, Bai Y, An W. Supramol. Chem., 2010, 22: 297.
[25] Sun L Z, Zhang H C, An W, Hao A Y, Hao J C. J. Incl. Phenom. Macrocycl. Chem., 2010, 68: 277.
[26] Zhang H C, Sun L Z, Liu Z N, An W, Hao A Y, Xin F F, Shen J. Colloids Surf. A, 2010, 358: 115.
[27] Zhang H C, An W, Liu Z N, Hao A Y, Hao J C, Shen J, Zhao X H, Sun H Y, Sun L Z. Carbohydra. Res., 2010, 345: 87.
[28] Zhang H C, Li Y Y, Sun H Y, Xin F F, Liu Z N, Hao A Y, Li J Y, Shen J, Xu S G, An W, Sun L Z, Sun T, Zhao W J, Li Y M, Kong L. J. Disper. Sci. Technol., 2011, 32: 834.
[29] Sun T, Li Y M, Zhang H C, Li J Y, Xin F F, Kong L, Hao A Y. Colloids Surf. A, 2011, 375: 87.
[30] Xin F F, Zhang H C, An W, Sun L Z, Hao A Y, Li Y M. J. Disper. Sci. Technol., 2012, 3: 1.
[31] Li S Y, Sun T, Yang X Z, Wang B, Xing P Y, Hou X H, Su J, Hao A Y. Colloid and Polym. Sci., 2013, 291: 2639.
[32] Li S Y, Xing P Y, Hou Y H, Yang J S, Yang X Z, Wang B, Hao A Y. J. Mol. Liq., 2013, 188: 74.
[33] An W, Zhang H C, Sun L Z, Hao A Y, Hao J C, Xin F F. Carbohydra. Res., 2010, 345: 914.
[34] Sun T, Guo Q, Zhang C, Hao J C, Xing P Y, Li S Y, Hao A Y, Liu G C. Langmuir, 2012, 28: 8625.
[35] Zhang H C, Shen J, Liu Z N, Bai Y, An W, Hao A Y. Carbohydra. Res., 2009, 344: 2028.
[36] Zhang H C, Xin F F, An W, Hao A Y, Wang X, Zhao X H, Liu Z N, Sun L Z. Colloids Surf. A, 2010, 363: 78.
[37] Sun T, Zhang H C, Yan H, Li J Y, Cheng G H, Hao A Y, Qiao H W, Xin F F. Supramol. Chem., 2011, 23: 351.
[38] Sun T, Zhang H C, Kong L, Qiao H W, Li Y M, Xin F F, Hao A Y. Carbohydra. Res., 2011, 346: 285.
[39] Sun T, Shen J, Yan H, Hao J C, Hao A Y. Colloids Surf. A, 2012, 414: 41.
[40] de Namor A F D, Cleverley R M, Zapata-Ormachea M L. Chem. Rev., 1998, 98: 2495.
[41] Guo D S, Liu Y. Chem. Soc. Rev., 2012, 41: 5907.
[42] Wang K, Guo D S, Wang X, Liu Y. ACS Nano, 2011, 5: 2880.
[43] Wang K, Guo D S, Liu Y. Chem. Eur. J., 2012, 18: 8758.
[44] Lee J W, Samal S, Selvapalam N, Kim H J, Kim K. Acc. Chem. Res., 2003, 36: 621.
[45] Day A I, Arnold A P, Blanch R J. WO2000-2000AU4122 0000505, 2000.
[46] Kim J, Jung I S, Kim S Y, Lee E, Kang J K, Sakamoto S, Yamaguchi K, Kim K. J. Am. Chem. Soc., 2000, 122: 540.
[47] Jeon Y J, Bharadwaj P K, Choi S W, Lee J W, Kim K. Angew. Chem., 2002, 114: 4654.
[48] Ogoshi T, Kanai S, Fujinami S, Yamagishi T, Nakamoto Y. J. Am. Chem. Soc., 2008, 130: 5022.
[49] Ogoshi T, Yamagishi T. Eur. J. Org. Chem., 2013, 15: 2961.
[50] 王凯(Wang K), 杨英威(Yang Y W), 张晓安(Zhang X A). 高等学校化学学报(Chemical Journal of Chinese Universities), 2012, 33(1): 1.
[51] Yang Y W, Sun Y L, Song N. Acc. Chem. Res., 2014, 47:1950.
[52] Li H, Chen D X, Sun Y L, Zheng Y B, Tan L L, Weiss P S, Yang Y W. J. Am. Chem. Soc., 2013, 135: 1570.
[53] Hou X S, Ke C F, Cheng C Y, Song N, Blackburn A K, Sarjeant A A, Botros Y Y, Yang Y W, Stoddart J F. Chem. Commun., 2014, 50: 6196.
[54] Wang K, Wang C Y, Wang Y, Li H, Bao C Y, Liu J Y, Zhang S X A, Yang Y W. Chem. Commun., 2013, 49: 10528.
[55] Zhou Y, Tan L L, Li Q L, Qiu X L, Qi A D, Tao Y C, Yang Y Y. Chem. Eur. J., 2014, 20: 2998.
[56] Yu G C, Han C Y, Zhang Z B, Chen J Z, Yan X Z, Zheng B, Liu S Y, Huang F H. J. Am. Chem. Soc., 2012, 134: 8711.
[57] Yu G C, Xue M, Zhang Z B, Li J Y, Han C Y, Huang F H. J. Am. Chem. Soc., 2012, 134: 13248.
[58] Yu G C, Zhou X Y, Zhang Z B, Han C Y, Mao Z W, Guo C Y, Huang F H. J. Am. Chem. Soc., 2012, 134: 19489.
[59] Liu G Y, Jin Q, Liu X S, Lv L P, Chen C J, Ji J. Soft Matter, 2011, 7: 662.
[60] Zhang H C, Ma X, Nguyen K T, Zhao Y L. ACS Nano, 2013, 7: 7853.
[61] Zhang H C, Liu Z N, Xin F F, An W, Hao A Y, Li J Y, Li Y Y, Sun L Z, Sun T, Zhao W J, Li Y M, Kong L. Carbohydra. Res., 2011, 346: 294.
[62] Sun T, Yan H, Liu G C, Hao J C, Su J, Li S Y, Xing P Y, Hao A Y. J. Phys. Chem. B, 2012, 116: 14628.
[63] Sun T, Ma M F, Yan H, Shen J, Su J, Hao A Y. Colloids Surf. A, 2013, 424: 105.
[64] Yang X Q, Grailer J J, Rowland I J, Javadi A, Hurley S A, Matson V Z, Steeber D A, Gong S Q. ACS Nano, 2010, 4: 6805.
[65] Duan Q P, Cao Y, Li Y, Hu X Y, Xiao T X, Lin C, Pan Y, Wang L Y. J. Am. Chem. Soc., 2013, 135: 10542.
[66] Ma M F, Guan Y, Zhang C, Hao J C, Xing P Y, Su J, Li S Y, Chu X X, Hao A Y. Colloids Surf. A, 2014, 454: 38.
[67] Yan Q, Yuan J Y, Cai Z N, Xin Y, Kang Y, Yin Y W. J. Am. Chem. Soc., 2012, 132: 9268.
[68] Guo D S, Wang K, Wang Y X, Liu Y. J. Am. Chem. Soc., 2012, 134: 10244.
[69] Wang K, Guo D S, Zhao M Y, Liu Y. Chem. Eur. J., 2014, 20: 1.
[70] Wang K, Guo D S, Liu Y. Chem. Eur. J., 2010, 16: 8006.
[71] Jiao D Z, Geng J, Loh X J, Das D, Lee T C, Scherman O A. Angew. Chem. Int. Ed., 2012, 51: 9633.

[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[3] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[4] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[5] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[6] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[7] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[8] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[9] Jidong Zhang, Achen Liu, Jiao Chen, Guanghui Yuan, Huafeng Jin. Fluorescent Organic Small Molecule Based on Biotin and Their Applications [J]. Progress in Chemistry, 2020, 32(5): 594-603.
[10] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[11] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.
[12] Mingfang Ma, Tianxiang Luan, Pengyao Xing, Zhaolou Li, Xiaoxiao Chu, Aiyou Hao. Low Molecular Weight Organic Compound Gel Based on β-cyclodextrin [J]. Progress in Chemistry, 2019, 31(2/3): 225-235.
[13] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[14] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[15] Peifeng Su, Hongxin Wu, Yongming Chen, Fei Peng. Micro/Nanomotors as Drug Delivery Agent [J]. Progress in Chemistry, 2019, 31(1): 63-69.