中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (08): 1292-1306 DOI: 10.7536/PC140339 Previous Articles   Next Articles

• Review •

Organic Cocrystal Optoelectronic Materials and Devices

Zhu Weigang1,2, Zhen Yonggang*1, Dong Huanli1, Fu Hongbing1, Hu Wenping1   

  1. 1. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Basic Research Program of China(No.2014CB643600, 2013CB933500), the State Key Program of National Natural Science of China (No.51303185, 51033006, 91027043, 91222203, 91233205)and the Strategic Priority Research Program (No.XDB12030300)of the Chinese Academy of Sciences

PDF ( 2490 ) Cited
Export

EndNote

Ris

BibTeX

Compared with one-component organic single crystals, organic cocrystals with unique packing structures and aggregate states show a variety of novel optoelectronic properties through multi-component synergistic and collective effects, paving the way to the development of high-performance or multifunctional optoelectronic devices, particularly in electrical conductors, ferroelectricity, ambipolar charge transporting, photoconductivity and luminescence. Moreover, the charge transfer pathway between donor (D) and acceptor (A) in organic cocrystal is also fundamentally interesting. Therefore, studies on organic cocrystals have gained much attentions in recent years. In this paper, firstly, we have classified organic cocrystals into three categories by the driving forces: charge transfer (CT), π-π interaction and halogen/hydrogen bond; secondly, we have introduced common organic donor materials, using 7,7,8,8-tetracyanoquinodimethane (TCNQ), 1,2,4,5-tetracyanobenzene (TCNB) and fullerene (C60) as the typical acceptors; Thirdly, we have listed eight popular methods used to prepare these organic cocrystals and discussed the relationship between molecule packing and performance of organic cocrystal; Finally, we have covered the applications of these novel cocrystals in organic optoelectronics. We believe that the study on the organic cocrystals is an effective way to achieve organic multi-functional single crystal materials and devices and to promote the development of organic solid state optoelectronics.

Contents
1 Introduction
2 Classification of organic cocrystals
2.1 Charge transfer complex crystals
2.2 Crystals formed by π-π interactions
2.3 Crystals formed by halogen and hydrogen bonds
2.4 Other crystals
3 Common donor/acceptor materials
3.1 TCNQ and its derivatives as acceptor
3.2 TCNB as acceptor
3.3 C60 as acceptor
4 Methods for preparation of crystals
4.1 Solution methods
4.2 Vapor phase method
4.3 Mechanochemical preparation
5 Relationship between molecular packing and function
6 Applications of organic cocrystals
6.1 Unipolar field effect transistors
6.2 Ambipolar field effect transistors
6.3 Photoresponse devices
6.4 Luminescent materials
6.5 Ambipolar field-effect and solid emitting crystals
6.6 Ferroelectric crystals
7 Conclusion and outlook

CLC Number: 

[1] Wang C L, Dong H L, Hu W P, Liu Y Q, Zhu D B. Chem. Rev., 2011, 112: 2208.
[2] Hains A W, Liang Z Q, Woodhouse M A, Gregg B A. Chem. Rev., 2010, 110: 6689.
[3] Tang C W, VanSlyke S A. Appl. Phys. Lett., 1987, 51: 913.
[4] Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y, Nishikawa T, Kawase T, Shimoda T, Ogawa S. Appl. Phys. Lett., 2007, 90: 102120.
[5] Stingelin-Stutzmann N, Smits E, Wondergem H, Tanase C, Blom P, Smith P, de Leeuw D. Nat. Mater., 2005, 4: 601.
[6] Li R J, Hu W P, Liu Y Q, Zhu D B. Acc. Chem. Res., 2010, 43: 529.
[7] Briseno A L, Mannsfeld S C B, Reese C, Hancock J M, Xiong Y J, Jenekhe S A, Bao Z N, Xia Y N. Nano Lett., 2007, 7: 2847.
[8] Jiang H, Zhao H P, Zhang K K, Chen X D, Kloc C, Hu W P. Adv. Mater., 2011, 23: 5075.
[9] Dadvand A, Moiseev A G, Sawabe K, Sun W H, Djukic B, Chung I, Takenobu T, Rosei F, Perepichka D F. Angew. Chem. Int. Ed., 2012, 51: 3837.
[10] Bisri S Z, Takenobu T, Yomogida Y, Shimotani H, Yamao T, Hotta S, Iwasa Y. Adv. Funct. Mater., 2009, 19: 1728.
[11] Bisri S Z, Sawabe K, Imakawa M, Maruyama K, Yamao T, Hotta S, Iwasa Y, Takenobu T. Sci. Rep., 2012, 2: 1.
[12] Zhao Y S, Fu H B, Peng A D, Ma Y, Liao Q, Yao J N. Acc. Chem. Res., 2009, 43: 409.
[13] Zheng J Y, Yan Y L, Wang X P, Zhao Y S, Huang J X, Yao J N. J. Am. Chem. Soc., 2012, 134: 2880.
[14] Xu Z Z, Liao Q, Shi Q, Zhang H L, Yao J N, Fu H B. Adv. Mater., 2012, 24: OP216.
[15] Jurchescu O D, Popinciuc M, van Wees B J, Palstra T T M. Adv. Mater., 2007, 19: 688.
[16] Kabe R, Nakanotani H, Sakanoue T, Yahiro M, Adachi C. Adv. Mater., 2009, 21: 4034.
[17] Nakanotani H, Saito M, Nakamura H, Adachi C. Appl. Phys. Lett., 2009, 95: 033308.
[18] Aakeroy C B, Salmon D J. CrystEngComm, 2005, 7: 439.
[19] Desiraju G R. CrystEngComm, 2003, 5: 466.
[20] Dunitz J D. CrystEngComm, 2003, 5: 506.
[21] Zhang J, Geng H, Virk T S, Zhao Y, Tan J H, Di C A, Xu W, Singh K, Hu W P, Shuai Z G, Liu Y Q, Zhu D B. Adv. Mater., 2012, 24: 2603.
[22] Zhang J, Tan J H, Ma Z Y, Xu W, Zhao G Y, Geng H, Di C A, Hu W P, Shuai Z G, Singh K, Zhu D B. J. Am. Chem. Soc., 2012, 135: 558.
[23] Ferraris J, Cowan D O, Walatka V, Perlstein J H. J. Am. Chem. Soc., 1973, 95: 948.
[24] Canevet D, Pérez E M, Martín N. Angew. Chem. Int. Ed., 2011, 50: 9248.
[25] Yan D, Delori A, Lloyd G O, Friš?i D?T, Day G M, Jones W, Lu J, Wei M, Evans D G, Duan X. Angew. Chem. Int. Ed., 2011, 50: 12483.
[26] Stojakovi D?J, Whitis A M, MacGillivray L R. Angew. Chem. Int. Ed., 2013, 52: 12127.
[27] Bosshard C, Pan F, Wong M S, Manetta S, Spreiter R, Cai C, Günter P, Gramlich V. Chem. Phys., 1999, 245: 377.
[28] Harris K D M, Stainton N M, Callan A M, Howie R A. J. Mater. Chem., 1993, 3: 947.
[29] Kumaresan S, Seethalakshmi P G, Kumaradhas P, Devipriya B. J. Mol. Struct., 2013, 1032: 169.
[30] Gagnière E, Mangin D, Puel F, Rivoire A, Monnier O, Garcia E, Klein J P. J. Cryst. Growth, 2009, 311: 2689.
[31] Lee S C, Ueda A, Kamo H, Takahashi K, Uruichi M, Yamamoto K, Yakushi K, Nakao A, Kumai R, Kobayashi K, Nakao H, Murakami Y, Mori H. Chem. Commun., 2012, 48: 8673.
[32] Boyineni A, Jayanty S, Pallepogu R. J. Cryst. Growth, 2013, 380: 241.
[33] Menard E, Podzorov V, Hur S H, Gaur A, Gershenson M E, Rogers J A. Adv. Mater., 2004, 16: 2097.
[34] Jiang H, Yang X J, Cui Z D, Liu Y C, Li H X, Hu W P. Appl. Phys. Lett., 2009, 94: 123308.
[35] Sakai M, Sakuma H, Ito Y, Saito A, Nakamura M, Kudo K. Phys. Rev. B, 2007, 76: 045111.
[36] Olmstead M M, Bettencourt-Dias A D, Lee H M, Pham D, Balch A L. Dalton Trans., 2003, 3227.
[37] Brook D J R, Koch T H. J. Mater. Chem., 1997, 7: 2381.
[38] Li J, Xiong Y, Wu Q H, Wang S T, Gao X K, Li H X. Eur. J. Org. Chem., 2012, 2012: 6136.
[39] Miller J S. Angew. Chem. Int. Ed., 2006, 45: 2508.
[40] Iwata S, Tanaka J, Nagakura S. J. Am. Chem. Soc., 1966, 88: 894.
[41] Reinheimer E, Zhao H H, Dunbar K. J. Chem. Crystallogr., 2010, 40: 514.
[42] Dillon R J, Bardeen C J. J. Phys. Chem. A, 2011, 115: 1627.
[43] Izuoka A, Tachikawa T, Sugawara T, Suzuki Y, Konno M, Saito Y, Shinohara H. J. Chem. Soc. Chem. Commun., 1992, 1472.
[44] Wakahara T, D’Angelo P, Miyazawa K, Nemoto Y, Ito O, Tanigaki N, Bradley D D C, Anthopoulos T D. J. Am. Chem. Soc., 2012, 134: 7204.
[45] Konarev D V, Lyubovskaya R N, Drichko N Y V, Yudanova E I, Shulga Y M, Litvinov A L, Semkin V N, Tarasov B P. J. Mater. Chem., 2000, 10: 803.
[46] Douthwaite R E, Green M L H, Heyes S J, Rosseinsky M J, Turner J F C. J. Chem. Soc. Chem. Commun., 1994, 1367.
[47] Ito Y, Virkar A A, Mannsfeld S, Oh J H, Toney M, Locklin J, Bao Z N. J. Am. Chem. Soc., 2009, 131: 9396.
[48] Wakahara T, Sathish M, Miyazawa K, Hu C P, Tateyama Y, Nemoto Y, Sasaki T, Ito O. J. Am. Chem. Soc., 2009, 131: 9940.
[49] Lei Y L, Jin Y, Zhou D Y, Gu W, Shi X B, Liao L S, Lee S T. Adv. Mater., 2012, 24: 5345.
[50] Liu C, Minari T, Lu X, Kumatani A, Takimiya K, Tsukagoshi K. Adv. Mater., 2011, 23: 523.
[51] Park S K, Varghese S, Kim J H, Yoon S J, Kwon O K, An B K, Gierschner J, Park S Y. J. Am. Chem. Soc., 2013, 135: 4757.
[52] Tremblay N J, Gorodetsky A A, Cox M P, Schiros T, Kim B, Steiner R, Bullard Z, Sattler A, So W Y, Itoh Y, Toney M F, Ogasawara H, Ramirez A P, Kymissis I, Steigerwald M L, Nuckolls C. Chem Phys Chem, 2010, 11: 799.
[53] Black H T, Perepichka D F. Angew. Chem. Int. Ed., 2014, 53: 2138.
[54] Braga D, Maini L, Grepioni F. Chem. Soc. Rev., 2013, 42: 7638.
[55] Friš?i D?T, Jones W. Cryst. Growth Des., 2009, 9: 1621.
[56] Bechgaard K, Kistenmacher T J, Bloch A N, Cowan D O. Acta Crystallogr. B, 1977, 33: 417.
[57] Pope M. Electronic Processes in Organic Crystals and Polymers. 2nd ed. Oxford: Oxford University Press, 1999.
[58] Rao K V, Jayaramulu K, Maji T K, George S J. Angew. Chem. Int. Ed., 2010, 49: 4218.
[59] Sagade A A, Rao K V, Mogera U, George S J, Datta A, Kulkarni G U. Adv. Mater., 2013, 25: 559.
[60] Sato S, Nikawa H, Seki S, Wang L, Luo G F, Lu J, Haranaka M, Tsuchiya T, Nagase S, Akasaka T. Angew. Chem. Int. Ed., 2012, 51: 1589.
[61] Kobayashi H, Nakayama J. Bull. Chem. Soc. Jpn., 1981, 54: 2408.
[62] Zhu L Y, Yi Y P, Li Y, Kim E G, Coropceanu V, Brédas J L. J. Am. Chem. Soc., 2012, 134: 2340.
[63] Wu H D, Wang F X, Xiao Y, Pan G B. J. Mater. Chem. C, 2013, 1: 2286.
[64] Wei L, Yao J N, Fu H B. ACS Nano, 2013, 7: 7573.
[65] Yu W, Wang X Y, Li J, Li Z T, Yan Y K, Wang W, Pei J. Chem. Commun., 2013, 49: 54.
[66] Wu H D, Wang F X, Xiao Y, Pan G B. J. Mater. Chem. C, 2014, 2: 2328.
[67] Lei Y L, Liao L S, Lee S T. J. Am. Chem. Soc., 2013, 135: 3744.
[68] Horiuchi S, Ishii F, Kumai R, Okimoto Y, Tachibana H, Nagaosa N, Tokura Y. Nat. Mater., 2005, 4: 163.
[69] Horiuchi S, Hasegawa T, Tokura Y. J. Phys. Soc. Jpn., 2006, 75: 051016.

[1] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[2] Yufu Chen, Xianggao Li, Yin Xiao, Shirong Wang. Solution Processed Large-Scale Small Molecular Organic Field-Effect Transistors [J]. Progress in Chemistry, 2017, 29(4): 359-372.
[3] Gaobo Lin, Ting Luo, Lvbing Yuan, Wenjie Liang*, Hai Xu*. High Performance n-Type and Ambipolar Small Organic Semiconductors for Organic Field-Effect Transistors [J]. Progress in Chemistry, 2017, 29(11): 1316-1330.
[4] . Pharmaceutical Cocrystals [J]. Progress in Chemistry, 2010, 22(05): 829-836.
[5] Liu Jie Jiang Lang Hu Wenping. The Application of Anthracene and Its Derivatives in Organic Field-Effect Transistors [J]. Progress in Chemistry, 2009, 21(12): 2568-2577.
[6] Yaling Liu,Hongxiang Li,Wenping Hu*,Daoben Zhu* . Organic Single-Crystal Field-Effect Transistors [J]. Progress in Chemistry, 2006, 18(0203): 189-199.