中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (08): 1378-1394 DOI: 10.7536/PC140312 Previous Articles   Next Articles

• Review •

Microbial and Chemical Production of Chondroitin Sulfate

Shi Yugang*1,2, Dang Yali3, Liu Yuhua1, Bai Xue1   

  1. 1. Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China;
    2. Department of Chemistry, University of Toronto, Toronto M5S;
    3. Institute of Health Food, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21106131, 31101344), the Analysis and Measurement Foundation of Zhejiang Province (No. 2013C37043), the Research Foundation of Educational Commission of Zhejiang Province of China (No. Y201016439) and the Scientific Research Fund for the New Talents of Zhejiang Gongshang University (No. 09-57)

PDF ( 1293 ) Cited
Export

EndNote

Ris

BibTeX

Chondroitin sulfates (ChS) are a complex polysaccharide having important structural and protective functions and play important roles in many biological processes. It has been widely applied in a variety of fields, such as medicine, biotechnology, pharmacy, food, cosmetics and textiles. This mini-review focuses on the recent advances in microbial and chemical synthesis of such molecules. The productive strains, fermentation conditions, convergent strategies, use of new starting materials, and syntheses of all the ChS variant oligosaccharides are discussed. In addition, suggestions for further studies in syntheses of ChS are proposed based on current research.

Contents
1 Introduction
2 Biotechnological production of ChS and ChS-like products
2.1 Enzymatic synthesis of ChS and ChS-like products
2.2 Microbial production of ChS and ChS-like products
3 Chemical synthesis of ChS and ChS-like products
4 Conclusion and outlook

CLC Number: 

[1] Gama C I, Tully S E, Sotogaku N, Clark P M, Rawat M, Vaidehi N, Goddard III W A, Nishi A, Hsieh-Wilson L C. Nature Chem. Biol., 2006, 9: 467.
[2] Garnjanagoonchorn W, Wongekalak L, Engkagul A. Chem. Eng. Proc., 2007, 46: 465.
[3] Lauder R M. Ther. Med., 2009, 17: 56.
[4] Legendre F, Bauge C, Roche R, Saurel A S, Pujol J P. Osteoarthritis Cartilage, 2008, 16: 105.
[5] Ronca F, Palmieri L, Panicucci P, Roncaet G. Osteoarthritis Cartilage, 1998, 6 : 14.
[6] Alberto M F, Romero D G, Lazzari M, Calabrese G C. Thromb. Res., 2008, 122: 109.
[7] Tovar M F, Mattos D A, Stelling M P, Sarcinelli-Luz S L, Nazareth R A, Mourño A S. Biochim. Biophys. Acta., 2005, 1740: 45.
[8] Sakai T, Kyogashima M, Kariya Y, Urano T, Takada Y, Takada A. Thromb. Res., 2000, 100: 557.
[9] Maruyama T, Toida T, Imanari T, Yu G Y, Linhardt R J. Carbohydr. Res., 1998, 306: 35.
[10] Bjornsson T D, Nash P V, Schaten R. Thromb. Res., 1982, 27: 15.
[11] Zheng J, Chen Y, Guan R. Biotechnol., 2008, 136: 586.
[12] Ofman D, Slim G C, Watt D K, Yorke S C. Carbohydr. Polym., 1997, 33: 47.
[13] Hardingham T. Osteoarthritis Cartilage, 1998, 6: 3.
[14] Uebelhart D, Malaise M, Marcolongo R, DeVathaire F, Piperno M, Mailleux E, Fioravanti A, Matoso L, Vignon E. Osteoarthritis Cartilage, 2004, 12: 269.
[15] Basalo I M, Chahine N O, Kaplun M, Chen F H, Hung C T, Ateshian G A. J. Biomech., 2007, 40: 1847.
[16] Mitsuhiko K, Kosei A, Tomohiro M, Matsusue Y, Mori K. Life Sci., 2009, 85: 477.
[17] Liu Y, Yang H, Otaka K, Takatsuki H, Sakanishi A. Colloid Surf. B-Biointerfaces, 2005, 43: 216.
[18] Joao R M, Gadelha E C, Fonseca S M, Sampaio L O, Pontes A L, Dietrich C P, Nader H B. Otolaryngol. Head Neck. Surg., 2000, 122: 115.
[19] Fthenou E, Zafiropoulos A, Tsatsakis A, Stathopoulos A, Karamanos N K, Tzanakakis G N. Int. J. Biochem. Cell Biol., 2006, 38: 2141.
[20] Tirziu D, Jinga V V, Simionescu M. Atherosclerosis, 2007, 147: 155.
[21] Tovar A M F, Mourao P A S. Atherosclerosis, 1996, 126: 185.
[22] Meyer B J, Duvillard L, Owen A, Packard C J, Caslake M J. Atherosclerosis, 2007, 195: e28.
[23] Briani C, Santoro M, Latov N. J. Neuroimmunol., 2000, 108: 216.
[24] Kazuyuki S, Tadahisa M. Curr. Opin. Struct. Biol., 2007, 17: 536.
[25] Galtrey C M, Fawcett J W. Brain Res. Rev., 2007, 54: 1.
[26] Sunwoo H H, Takuo N, Hudson R J, Sim J S. Comp. Biochem. Physiol. B, 1998, 120: 273.
[27] Volpi N. J Chromatogr. B, 1996, 685: 27.
[28] Theocharis A D, Karamanos N K, Papageorgakopoulou N, Tsiganosa C P, Theocharis D A. Biochim. Biophys. Acta, 2002, 1569: 117.
[29] Achur R N, Muthusamy A, Madhunapantula S V, Bhavanandan V P, Seudieu C, Gowda D C. Biochim. Biophys. Acta, 2004, 1701: 109.
[30] 熊双丽(Xiong S L), 金征宇(Jin Z Y). 中成药(Chinese Traditional Patent Medicine), 2006, 28 (9) : 1343.
[31] 熊双丽(Xiong S L), 李安林(Li A L), 吴照明(Wu Z M), 魏明(Wei M). 农业工程学报(Transactions of the Chinese Society of Agricultural Engineering), 2009, 25 (1) : 271.
[32] 陈红丽(Chen L H), 吕全建(Lv Q J), 姬小明(Ji X M). 安徽农业科学(Journal of Auhui Agricultural Sciences), 2008, 36 (15) : 6165.
[33] Karst N A, Linhardt R J. Curr. Med. Chem., 2003, 10: 1993.
[34] Schiraldi C, Cimini D, Rosa M. Microbiol. Biotechnol., 2010, 87: 1209.
[35] Huckerby T N, Lauder R M, Brown G M, Nieduszynski I A, Anderson K, Boocock J, Sandall P L, Stephen D. Eur. J. Biochem., 2001, 268: 1181.
[36] Vitor H. Pomin. Mar. Drugs, 2014, 12: 232.
[37] Shetty A K, Takanari K, Shuji M, Narumi M, Kudo Y, Yamada S, Sugahara K. Carbohydr. Res., 2009, 344: 1526.
[38] GuerriniM, Beccati D, Shriver Z, Naggi A, Viswanathan K, Bisio A, Capila I, Lansing J C, Guglieri S, Fraser B, Al-Hakim A, Gunay N S, Zhang Z, Robinson L, Buhse L, Nasr M, Woodcock J, Langer R, Venkataraman G, Linhardt R J, Casu B, Torri G, Sasisekharan R. Nature Biotechnol., 2008, 26: 669.
[39] Schiraldi C, Cimini D, de Rosa M. Microbiol. Biotechnol., 2010, 87: 1209.
[40] Jang H, Yoon Y K, Kim J A, Kim H S, An S J, Seo J H, Cui C, Carbis R J. Biotechnol., 2008, 135: 71.
[41] Cimini D, de Rosa M, Schiraldi C. Biotechnol. J., 2012, 7: 237.
[42] Kobayashi S, Fujikawa S-i, Ohmae M. J. Am. Chem. Soc., 2003, 125: 14357.
[43] Fujikawa S-i, Ohmae M, Kobayashi S. Biomacromolecules, 2005, 6: 2935.
[44] Kobayashi S, Ohmae M, Ochiai H, Fujikawa S-i. Chem. Eur. J., 2006, 12: 5962.
[45] Sugiura N, Shimokata S, Minamisawa T, Hirabayashi J. Kimata K, Watanabe H. Glycoconj. J., 2008, 25: 521.
[46] Jolly J F, Klimaszewski K, Nakanishi Y, Matsubara H, Takahashi T, Nishio K. US 20100063001A1, 2009.
[47] Rrodriguez M L, Jann B, Jann K. Eur. J. Biochem., 1988, 177: 117.
[48] Manzoni M, Bergomi S, Molinari F, Cavazzoni V. Biotechnol. Lett., 1996, 18: 383.
[49] Petrucci F, Zoppetti G, Oreste P, Cipolletti G. WO0102597 (A1), 2001.
[50] Zoppetti G, Oreste P. US 6777398B2, 2002.
[51] Cimini D, Restaino O F, Catapano A, de Rosa M, Schiraldi C. Appl. Microbiol. Biotechnol., 2010, 85: 1779.
[52] Restaino O F, Cimini D, de Rosa M, Catapano A, de Rosa M, Schiraldi C. Microb. Cell Fact, 2011, 10: 10.
[53] Schiraldi C, Alfano A, Cimini D, de Rosa M, Panariello A, Restaino O F, de Rosa M. Biotechnol. Prog., 2012, 28: 1012.
[54] Schiraldi C, Carcarino L I, Alfano A, Restaino O F, Panariello A, de Rosa M. Biotechnol. J., 2011, 6: 410.
[55] Suzuki K, Miyamoto K, Kaseyama H. US 20100151532A1, 2008.
[56] Zanfardino A, Restaino O F, Notomista E, Cimini D, Schiraldi C, De Rosa M, De Felice M, Varcamonti M. Microb. Cell Fact, 2010, 9: 34.
[57] Spicer A P, Kaback L A, Smith T J, Seldin M F. J. Biol. Chem., 1998, 273: 25117.
[58] Wegrowski Y, Perreau C, Bontemps Y, Maquart F X. Biochem. Biophys. Res., 1998, 250: 206.
[59] Roman E, Roberts I, Lidholt K, Kusche-Gullberg M. Biochem. J., 2003, 374: 767.
[60] DeRosa M, Schiraldi C, Cimini D. WO 2010136435A1, 2009.
[61] Bedini E, DeCastro C, DeRosa M, Di Nola A, Iadonisi A, Restaino O F, Schiraldi C, Parrilli M. Angew. Chem. Int. Ed. Engl., 2011, 50: 6160.
[62] De Angelis P L. US 20030104601, 2003.
[63] De Angelis P L. US 7569386, 2009.
[64] 刘立明(Liu L M), 吴秋林(Wu Q L), 刘佳(Liu J), 陈坚(Chen J). CN 201110127831.1, 2011.
[65] DeAngelis P L, Gunay N S, Toida T, Linhardt R J. Carbohydr. Res., 2002, 337: 1547.
[66] DeAngelis P L. US 7569386B2, 2005.
[67] DeAngelis P L. US 7642071B2, 2007.
[68] Sugiugura N, Koji J. US 20090155851, 2006.
[69] Narimatsu H, Kimata K, Yada T, Sato T, Goto M US 7232676B2, 2007.
[70] Liu L M, Liu J, Wu Q L. CN 201110317393.5, 2011.
[71] Tully S E, Mabon R, Gama C I, Tsai S M, Liu X, Hsieh-Wilson L C. J. Am. Chem. Soc., 2004, 126: 7736.
[72] Tully S E, Rawat M, Hsieh-Wilson L C. J. Am. Chem. Soc., 2006, 128: 7740.
[73] Tamura J, Tokuyoshi M. Biosci. Biotechnol. Biochem., 2004, 68: 2436.
[74] Gama C I, Tully S E, Sotogaku N, Clark P M, Rawat M, Vaidehi N, Goddard W A, Nishi A, Hsieh-Wilson L C. Nature Chem. Biol., 2006, 2: 467.
[75] Tamura J, Neumann K.W, Kurono S, Ogawa T. Carbohydr. Res., 1998, 305: 43.
[76] Tamura J, Nakada Y, Taniguchi K, Yamane M. Carbohydr. Res., 2008, 343: 39.
[77] Lopin C, Jacquinet J C. Angew. Chem. Int. Ed., 2006, 45: 2574.
[78] Vibert A, Lopin-Bon C, Jacquinet J C. Chem. Eur. J., 2009, 15: 9561.
[79] Jacquinet J C, Lopin-Bon C, Vibert A. Chem. Eur. J., 2009, 15: 9579.
[80] Vibert A, Lopin-Bon C, Jacquinet J C. Eur. J. Org. Chem., 2011, 22: 4183.
[81] Despras G, Bernard C, Perrot A, Cattiaux L, Prochiantz A, Lortat-Jacob H, Mallet J M. Chemistry Eur. J., 2013, 19: 531.

[1] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[2] Quanfei Zhu, Jundi Hao, Jingwen Yan, Yu Wang, Yuqi Feng. FAHFAs: Biological Functions, Analysis and Synthesis [J]. Progress in Chemistry, 2021, 33(7): 1115-1125.
[3] Hu Daihua, Chen Wang, Wang Yongji. Synthesis and Structure-Activity Relationship of Active Vitamin D3 Analogues [J]. Progress in Chemistry, 2016, 28(6): 839-859.
[4] Liang Yanyu, Tang Shan, Zheng Jishen. Cell-Permeable Cyclic Peptides [J]. Progress in Chemistry, 2014, 26(11): 1793-1800.
[5] Liu Ning, Wang Xuzhen*, Xu Wenya, Guo Decai, Tang Jizhou, Zhang Baolu. Chemical Synthesis of Molybdenum Disulfide and Its Applications as Hydrodesulphurization Catalysts [J]. Progress in Chemistry, 2013, 25(05): 726-734.
[6] Liu Xiaoyang. Chemistry under High Pressure [J]. Progress in Chemistry, 2009, 21(0708): 1373-1388.
[7] . Chemical Synthesis of Rebeccamycin and Its Analogues [J]. Progress in Chemistry, 2008, 20(11): 1699-1707.
[8] Qiang Ma1|Yong Ju1,2**|Yufen Zhao1. Chemical Synthesis of Glycoconjugates [J]. Progress in Chemistry, 2006, 18(09): 1110-1120.
[9] Han Difei,Wang Anjie,Kong Xiangguo. Applications of Mesoporous MCM-41 in Heterogeneous Catalysis of Synthesis of Fine Chemicals [J]. Progress in Chemistry, 2002, 14(02): 98-.
[10] Zeng Fanxing,Jiang Hualiang,Yang Yushe,Chen Kaixian,Ji Ruyun**. Progress in Synthesis and Structural Modification of Huperzine A [J]. Progress in Chemistry, 2000, 12(01): 63-.
[11] Guo Zhixin,Li Yuliang,Zhu Daoben. Advances in Chemistry of the Fullerenes [J]. Progress in Chemistry, 1998, 10(01): 1-.