中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (08): 1395-1408 DOI: 10.7536/PC140308 Previous Articles   Next Articles

• Review •

Anti-Cancer Drug Delivery System

Li Yan, Huang Wei*, Huang Ping, Zhu Xinyuan, Yan Deyue   

  1. School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Basic Research Program of China (No. 2009CB930400, 2012CB821500, 2013CB834506, 2014CB643600) and the National Natural Science Foundation of China (No. 21174086, 21074069, 91127047)

PDF ( 1557 ) Cited
Export

EndNote

Ris

BibTeX

Currently, most of the reported small molecular anti-cancer drugs have some inherent drawbacks, such as poor water solubility, high drug dosage, short drug half-life in vivo and so on. After taken by oral administration or intravenous injection, these anti-cancer drugs can permeate into cells only by the approach of free diffusion. In general, they can not only kill cancer cells but also normal ones due to lacking of selectivity, and even cause secondary injury to patients. As a result, the clinical applications of these anti-cancer drugs are limited to a large extent. The anti-cancer drug delivery systems (such as micelles, nanogels and nanoparticles, etc.) constructed from the suitable carrier materials may not only prolong the circulation in blood compartments and reduce side effects to normal tissues, but also enhance the water solubility as well as improve the bioavailability of the small molecular anti-cancer drugs. Thus, more and more attentions are paid to them by researchers and pharmacy companies. Up to now, anti-cancer drug delivery systems have advanced over 60 years, and the evolution can be divided into three stages approximately. In this review, three different development stages and the recent progress of anti-cancer drug delivery systems are summarized. Besides, the future development of anti-cancer drug delivery systems is also prospected.

Contents
1 Introduction
2 Anti-cancer drug delivery system
2.1 The first generation of drug delivery system
2.2 The second generation of drug delivery system
2.3 The third generation of drug delivery system
3 Outlook

CLC Number: 

[1] Chen W Q, Zeng H M, Zheng R Q, Zhang S W, He J. Chin. J. Cancer Res., 2012, 24: 1.
[2] Allen T M. Cullis P R. Science, 2004, 303: 1818.
[3] Shen Y Q, Jin E, Zhang B, Murphy C J, Sui M H, Zhao J, Wang J Q, Tang J B, Fan M H, Kirk E V, Murdoch W J. J. Am. Chem. Soc., 2010, 132: 4259.
[4] Danquah M K, Zhang X A, Mahato R I. Adv. Drug Deliv. Rev., 2011, 63: 623.
[5] Liggins R T, Burt H M. Adv. Drug Deliv. Rev., 2002, 54: 191.
[6] Du W T, Hong L, Yao T W, Yang X C, He Q J, Yang B, Hu Y Z. Bioorg. Med. Chem., 2007, 15: 6323.
[7] Rösler A, Vandermeulen G W M, Klok H A. Adv. Drug Deliv. Rev., 2012, 64: 270.
[8] Deng C, Jiang Y J, Cheng R, Meng F H, Zhong Z Y. Nano Today, 2012, 7: 467.
[9] Gao G H, Li Y, Lee D S. J. Control. Release, 2013, 169: 180.
[10] Garofalo C, Capuano G, Sottile R, Tallerico R, Adami R, Reverchon E, Carbone E, Izzo L, Pappalardo D. Biomacromolecules, 2014, 15: 403.
[11] Chang G T, Ci T Y, Yu L, Ding J D. J. Control. Release, 2011, 156: 21.
[12] Joung Y K, Jang J Y, Choi J H, Han D K, Park K D. Mol. Pharm., 2013, 10: 685.
[13] Zhang J X, Ma P X. Adv. Drug Deliv. Rev., 2013, 65: 1215.
[14] Goncalves M, Maciel D, Capelo D, Xiao S L, Sun W J, Shi X Y, Rodrigues J, Tomas H, Li Y L. Biomacromolecules, 2014, 15: 492.
[15] Zheng J, Zhu G Z, Li Y H, Li C M, You M X, Chen T, Song E, Yang R H, Tan W H. ACS Nano, 2013, 7: 6545.
[16] Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. J. Control. Release, 2013, 166: 182.
[17] Xue X, Hall M D, Zhang Q, Wang P C, Gottesman M M, Liang X J. ACS Nano, 2013, 7: 10452.
[18] 张磊(Zang L), 刘晓燕(Liu X Y), 沈晶晶(Shen J J), 卢晓梅(Lu X M), 范曲立(Fan Q L), 黄维(Huang W). 化学进展(Prog. Chem.), 2013, 25: 1375.
[19] Quadir M A, Haag R. J. Control. Release, 2012, 161: 484.
[20] Murugan E, Geetha R D P, Yogaraj V. Colloids Surf. B Biointerfaces, 2014, 114: 121.
[21] Mignani S, El Kazzouli S, Bousmina M, Majoral J P. Adv. Drug Deliv. Rev., 2013, 65: 1316.
[22] Bildstein L, Dubernet C, Couvreur P. Adv. Drug Deliv. Rev., 2011, 63: 3.
[23] Bala V, Rao S, Boyd B J, Prestidge C A. J. Control. Release, 2013, 172: 48.
[24] 任天斌(Ren T B), 侠文娟(Xia W J), 吴畏(Wu W), 李永勇(Li Y Y). 化学进展(Prog. Chem.), 2013, 25: 775.
[25] Shi J J, Votruba A R, Farokhzad O C, Langer R. Nano Lett., 2010, 10: 3223.
[26] Farokhzad O C, Langer R. ACS Nano, 2009, 3: 16.
[27] Wagner V, Dullaart A, Bock A K, Zweck A. Nat. Biotechnol., 2006, 24: 1211.
[28] Zhang L, Gu F X, Chan J M, Wang A Z, Langer R S, Farokhzad O C. Clin. Pharmacol. Ther., 2008, 83: 761.
[29] Zhang Y, Chan H F, Leong K W. Adv. Drug Deliv. Rev., 2013, 65: 104.
[30] Park K. ACS Nano, 2013, 7: 7442.
[31] Bangham A D, Standish M M, Watkins J C. J. Mol. Biol., 1965, 13: 238.
[32] Kim Y C, Park J H, Prausnitz M R. Adv. Drug Deliv. Rev., 2012, 64: 1547.
[33] Ringsdorf H J. Polym. Sci. Polym. Symp., 1975, 51: 135.
[34] Lutolf M P, Hubbell J A. Nat. Biotechnol., 2005, 23: 47.
[35] Duncan R. Nat. Rev. Cancer, 2006, 6: 688.
[36] Bui D T, Maksimenko A, Desmaёle D, Harrisson S, Vauthier C, Couvreur P, Nicolas J. Biomacromolecules, 2013, 14: 2837.
[37] Chitkara D, Mittal A, Behrman S W, Kumar N, Mahato R I. Bioconjugate Chem., 2013, 24: 1161.
[38] Wang H B, Wang Y, Chen Y J, Jin Q, Ji J. Polym. Chem., 2014, 5: 854.
[39] Wang H B, Xu F M, Wang Y, Liu X S, Jin Q, Ji J. Polym. Chem., 2013, 4: 3012.
[40] Yang Y Q, Zhao B, Li Z D, Lin W J, Zhang C Y, Guo X D, Wang J F, Zhang L J. Acta Biomater., 2013, 9: 7679.
[41] Seki K, Tirrell D. Macromolecules, 1984, 17: 1692.
[42] Ropert C, Lavignon M, Dubernet C, Couvreur P, Malvy C. Biochem. Biophys. Res. Commun., 1992, 183: 879.
[43] Thomas J L, Tirrell D A. Acc. Chem. Res., 1992, 25: 336.
[44] Martin T J, Procházka K, Munk P, Webber S E. Macromolecules, 1996, 29: 6071.
[45] Bae Y, Fukushima S, Harada A, Kataoka K. Angew. Chem. Int. Ed., 2003, 42: 4640.
[46] Zhang C Y, Yang Y Q, Huang T X, Zhao B, Guo X D, Wang J F, Zhang L J. Biomaterials, 2012, 33: 6273.
[47] Koyamatsu Y, Hirano T, Kakizawa Y, Okano F, Takarada T, Maeda M. J. Control. Release, 2014, 173: 89.
[48] Duan X P, Xiao J S, Yin Q, Zhang Z W, Yu H J, Mao S R, Li Y P. ACS Nano, 2013, 7: 5858.
[49] She W C, Li N, Luo K, Guo C H, Wang G, Geng Y Y, Gu Z W. Biomaterials, 2013, 34: 2252.
[50] Sun T M, Wang Y C, Wang F, Du J Z, Mao C Q, Sun C Y, Tang R Z, Liu Y, Zhu J, Zhu Y H, Yang X Z, Wang J. Biomaterials, 2014, 35: 836.
[51] Jin N X, Morin E A, Henn D M, Cao Y, Woodcock J W, Tang S C, He W, Zhao B. Biomacromolecules, 2013, 14: 2713.
[52] 张驰宇(Zhang C Y), 贺高红(He G H), 焉晓明(Yan X M), 段志军(Duan Z J). 功能材料(J. Funct. Mater.), 2010, 12: 2153.
[53] Wang J, Liu C H, Shuai Y, Cui X Y, Nie L. Colloids Surf. B: Biointerfaces, 2014, 113: 223.
[54] Scarpa J S, Mueller D D, Klotz I M. J. Am. Chem. Soc., 1967, 89: 6024.
[55] Cammas S, Suzuki K, Sone C, Sakurai Y, Kataoka K, Okano T. J. Control. Release, 1997, 48: 157.
[56] Chung J E, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T. J. Control. Release, 1999, 62: 115.
[57] Chung J E, Yokoyama M, Okano T. J. Control. Release, 2000, 65: 93.
[58] Luo Y L, Yang X L, Xu F, Chen Y S, Zhang B. Colloids Surf. B: Biointerfaces, 2014, 114: 150.
[59] Zhu Z C, Gao N, Wang H J, Sukhishvili S A. J. Control. Release, 2013, 171: 73.
[60] Wei H, Wu D Q, Li Q, Chang C, Zhou J P, Zhang X Z, Zhuo R X. J. Phys. Chem. C, 2008, 112: 15329.
[61] Loh X J, Wu Y L, Joseph S W T, Irzuan N M N, Zhang Z X, Xu F J, Kang E T, Neoh K G, Li J. Polymer, 2008, 49: 5084.
[62] Chang C, Wei H, Quan C Y, Li Y Y, Liu J, Wang Z C, Cheng S X, Zhang X Z, Zhuo R X. J. Polym. Sci. Part A: Polym. Chem., 2008, 46: 3048.
[63] Kohori F, Sakai K, Aoyagi T, Yokoyama M, Sakurai Y, Okano T. J. Control. Release, 1998, 55: 87.
[64] Loh X J, Zhang Z X, Wu Y L, Lee T S, Li J. Macromolecules, 2009, 42: 194.
[65] Moghadam M N, Kolesov V, Vogel A, Klok H A, Pioletti D P. Biomaterials, 2014, 35: 450.
[66] Lin Z Q, Gao W, Hu H X, Ma K, He B, Dai W B, Wang X Q, Wang J C, Zhang X, Zhang Q. J. Control. Release, 2014, 174: 161.
[67] Boustta M, Colombo P E, Lenglet S, Poujol S, Vert M. J. Control. Release, 2014, 174: 1.
[68] Koning G A, Eggermont A M M, Lindner L H, ten Hagen T L M. Pharm. Res., 2010, 27: 1750.
[69] May J P, Li S D. Recent Pat. Biomed. Eng., 2012, 5: 148.
[70] Ta T, Porter T M. J. Control. Release, 2013, 169: 112.
[71] May J P, Ernsting M J, Undzys E, Li S D. Mol. Pharm., 2013, 10: 4499.
[72] Li L, ten Hagen T L M, Hossann M, Süss R, van Rhoon G C, Eggermont A M M, Haemmerich D, Koning G A. J. Control. Release, 2013, 168: 142.
[73] Kuppusamy P, Li H Q, IIangovan G, Cardounel A J, Zweier J L, Yamada K, Krishna M C, Mitchell J B. Cancer Res., 2002, 62: 307.
[74] Meng F H, Hennink W E, Zhong Z Y. Biomaterials, 2009, 30: 2180.
[75] Ryu J H, Roy R, Ventura J, Thayumanavan S. Langmuir, 2010, 26: 7086.
[76] Cheng R, Feng F, Meng F H, Deng C, Feijen J, Zhong Z Y. J. Control. Release, 2011, 152: 2.
[77] Kakizawa Y, Harada A, Kataoka K. J. Am. Chem. Soc., 1999, 121: 11247.
[78] Kakizawa Y, Harada A, Kataoka K. Biomacromolecules, 2001, 2: 491.
[79] Oishi M, Hayama T, Akiyama Y, Takae S, Harada A, Yamasaki Y, Nagatsugi F, Sasaki S, Nagasaki Y, Kataoka K. Biomacromolecules, 2005, 6: 2449.
[80] Takae S, Miyata K, Oba M, Ishii T, Nishiyama N, Itaka K, Yamasaki Y, Koyama H, Kataoka K. J. Am. Chem. Soc., 2008, 130: 6001.
[81] Dong W F, Kishimura A, Anraku Y, Chuanoi S, Kataoka K. J Am. Chem. Soc., 2009, 131: 3804.
[82] Matsumoto S, Christie R J, Nishiyama N, Miyata K, Ishii A, Oba M, Koyama H, Yamasaki Y, Kataoka K. Biomacromolecules, 2009, 10: 119.
[83] Thambi T, Yoon H Y, Kim K, Kwon I C, Yoo C K, Park J H. Bioconjugate Chem., 2011, 22: 1924.
[84] Sun Y, Zou W, Bian S Q, Huang Y H, Tan Y F, Liang J, Fan Y J, Zhang X D. Biomaterials, 2013, 34: 6818.
[85] Cui C, Xue Y N, Wu M, Zhang Y, Yu P, Liu L, Zhuo R X, Huang S W. Biomaterials, 2013, 34: 3858.
[86] Page S M, Martorella M, Parelkar S, Kosif I, Emrick T. Mol. Pharm., 2013, 10: 2684.
[87] Liu J Y, Pang Y, Huang W, Huang X H, Meng L L, Zhu X Y, Zhou Y F, Yan D Y. Biomacromolecules, 2011, 12: 1567.
[88] Liu J Y, Huang W, Pang Y, Huang P, Zhu X Y, Zhou Y F, Yan D Y. Angew. Chem. Int. Ed., 2011, 50: 9162.
[89] Liu J Y, Pang Y, Huang W, Zhu Z Y, Zhu X Y, Zhou Y F, Yan D Y. Biomacromolecules, 2011, 12: 2407.
[90] Cao W, Zhang X L, Miao X M, Yang Z M, Xu H P. Angew. Chem. Int. Ed., 2013, 52: 6233.
[91] Ding Y, Yi Y, Xu H P, Wang Z Q, Zhang X. Chem. Commun., 2014, 50: 2585.
[92] Ma N, Xu H, An L, Li J, Sun Z, Zhang X. Langmuir, 2011, 27: 5874.
[93] Zhang X, Wang C. Chem. Soc. Rev., 2011, 40: 94.
[94] Xu H P, Cao W, Zhang X. Acc. Chem. Res., 2013, 46: 1647.
[95] Fu Y, Chen J Y, Xu H P, Oosterwijck C V, Zhang X, Dehaen W, Smet M. Macromol. Rapid Commun., 2012, 33: 798.
[96] Ma N, Li Y, Xu H P, Wang Z Q, Zhang X. J. Am. Chem. Soc., 2010, 132: 442.
[97] Liu J Y, Pang Y, Chen J, Huang P, Huang W, Zhu X Y, Yan D Y. Biomaterials, 2012, 33: 7765.
[98] Wang G, Tong X, Zhao Y. Macromolecules, 2004, 37: 8911.
[99] Jiang J Q, Tong X, Zhao Y. J. Am. Chem. Soc., 2005, 127: 8290.
[100] Li Y M, Qian Y F, Liu T, Zhang G Y, Liu S Y. Biomacromolecules, 2012, 13: 3877.
[101] Chen L F, Wang W Q, Su B, Wen Y Q, Li C B, Zhou Y B, Li M Z, Shi X D, Du H W, Song Y L, Jiang L. ACS Nano, 2014, 8: 744.
[102] Jana A, Devi K S, Maiti T K, Singh N D. J. Am. Chem. Soc., 2012, 134: 7656.
[103] Goodwin A P, Mynar J L, Ma Y Z, Fleming G R, Fréchet J M J. J. Am. Chem. Soc., 2005, 127: 9952.
[104] Liu G Y, Chen C J, Li D D, Wang S S, Ji J. J. Mater. Chem., 2012, 22: 16865.
[105] Sun L, Ma X F, Dong C M, Zhu B S, Zhu X Y. Biomacromolecules, 2012, 13: 3581.
[106] Lin H M, Wang W K, Hsiung P A, Shyu S G. Acta Biomater., 2010, 6: 3256.
[107] Yang J, He W D, He C, Tao J, Chen S Q, Niu S M, Zhu S L. J. Polym. Sci. Part A: Polym. Chem., 2013, 51: 3791.
[108] Guardado-Alvarez T M, Sudha D L, Russell M M, Schwartz B J, Zink J I. J. Am. Chem. Soc., 2013, 135: 14000.
[109] Cao J, Huang S S, Chen Y Q, Li S W, Li X, Deng D W, Qian Z Y, Tang L P, Gu Y Q. Biomaterials, 2013, 34: 6272.
[110] Zhang P, Steelant W, Kumar M, Scholfield M. J. Am. Chem. Soc., 2007, 129: 4526.
[111] Chen G Y, Qiu H L, Prasad P N, Chen X Y. Chem. Rev., 2014, 114: 5161.
[112] Wang C, Cheng L, Liu Z. Biomaterials, 2011, 32: 1110.
[113] Xu H, Cheng L, Wang C, Ma X X, Li Y G, Liu Z. Biomaterials, 2011, 32: 9364.
[114] Shen J, Zhao L, Han G. Adv. Drug Deliv. Rev., 2013, 65: 744.
[115] Dai Y L, Xiao H H, Liu J H, Yuan Q H, Ma P A, Yang D M, Li C X, Cheng Z Y, Hou Z Y, Yang P P, Lin J. J. Am. Chem. Soc., 2013, 135: 18920.
[116] Kim H, Lee D, Kim J, Kim T, Kim W J. ACS Nano, 2013, 7: 6735.
[117] Tan S Y, Grimes S. Singapore Med. J., 2010, 51: 842.
[118] Devadasu V R, Bhardwaj V, Ravi K M N V. Chem. Rev., 2013, 113: 1686.
[119] Miao D Y, Jiang M Y, Liu Z Y, Gu G Z, Hu Q Y, Kang T, Song Q X, Yao L, Li W, Gao X L, Sun M J, Chen J. Mol. Pharm., 2014, 11: 90.
[120] Wu J H, Song C C, Jiang C X, Shen X, Qiao Q, Hu Y Q. Mol. Pharm., 2013, 10: 3555.
[121] Tang J, Zhang L, Liu Y Y, Zhang Q Y, Qin Y, Yin Y J, Yuan W M, Yang Y T, Xie Y F, Zhang Z R, He Q. Int. J. Pharm., 2013, 454: 31.
[122] Miura Y, Takenaka T, Toh K, Wu S R, Nishihara H, Kano M R, Ino Y, Nomoto T, Matsumoto Y, Koyama H, Cabral H, Nishiyama N, Kataoka K. ACS Nano, 2013, 7: 8583.
[123] Hariri G, Edwards A D, Merrill T B, Greenbaum J M, van der Ende A E, Harth E. Mol. Pharm., 2014, 11: 265.
[124] Xu W J, Siddiqui I A, Nihal M, Pilla S, Rosenthal K, Mukhtar H, Gong S Q. Biomaterials, 2013, 34: 5244.
[125] Li X, Zhao Q H, Qiu L Y. J. Control. Release, 2013, 171: 152.
[126] Guaragna A, Chiaviello A, Paolella C, D’Alonzo D, Palumbo G, Palumbo G. Bioconjugate Chem., 2012, 23: 84.
[127] Fan J Q, Zeng F, Wu S Z, Wang X D. Biomacromolecules, 2012, 13: 4126.
[128] Santra S, Kaittanis C, Santiesteban O J, Perez J M. J. Am. Chem. Soc., 2011, 133: 16680.
[129] El-Gogary R I, Rubio N, Wang J T W, Al-Jamal W T, Bourgognon M, Kafa H, Naeem M, Klippstein R, Abbate V, Leroux F, Bals S, Tendeloo G V, Kamel A O, Awad G A S, Mortada N D, Al-Jamal K T. ACS Nano, 2014, 8: 1384.
[130] Nair B P, Vaikkath D, Nair P D. Langmuir, 2014, 30: 340.
[131] Mackiewicz N, Nicolas J, Handké N, Noiray M, Mougin J, Daveu C, Lakkireddy H R, Bazile D, Couvreur P. Chem. Mater., 2014, 26: 1834.
[132] Ladmiral V, Semsarilar M, Canton I, Armes S P. J. Am. Chem. Soc., 2013, 135: 13574.
[133] Ding J X, Xiao C S, Li Y, Cheng Y L, Wang N N, He C L, Zhuang X L, Zhu X J, Chen X S. J. Control. Release, 2013, 169: 193.
[134] Jiang X Y, Xin H L, Ren Q Y, Gu J J, Zhu L J, Du F Y, Feng C L, Xie Y K, Sha X Y, Fang X L. Biomaterials, 2014, 35: 518.
[135] Liu Y, Gao F P, Zhang D, Fan Y S, Chen X G, Wang H. J. Control. Release, 2014, 173: 140.
[136] Du C L, Deng D W, Shan L L, Wan S N, Cao J, Tian J M, Achilefu S, Gu Y Q. Biomaterials, 2013, 34: 3087.
[137] Guo X, Shi C L, Wang J, Di S B, Zhou S B. Biomaterials, 2013, 34: 4544.
[138] Yang Z G, Lee J H, Jeon H M, Han J H, Park N, He Y X, Lee H, Hong K S, Kang C, Kim J S. J. Am. Chem. Soc., 2013, 135: 11657.
[139] Zhao F, Yin H, Li J. Biomaterials, 2014, 35: 1050.

[1] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[2] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[3] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[4] Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Anticancer Drugs Targeting Glucose Transporters(GLUTs) [J]. Progress in Chemistry, 2020, 32(12): 1869-1878.
[5] Juan Shen, Yang Zhu, Hongdong Shi, Yangzhong Liu. Multifunctional Nanodrug Delivery Systems for Platinum-Based Anticancer Drugs [J]. Progress in Chemistry, 2018, 30(10): 1557-1572.
[6] Panpan Chen, Bingbing Shi*. Supramolecular Drug Delivery Systems Based on Macrocyclic Hosts [J]. Progress in Chemistry, 2017, 29(7): 720-739.
[7] Jiang Ge, Luo Feng, Xu Yaozhong, Zhang Xiaohui. UVA Assisted 4-Thiothymidine for Cancer Treatment [J]. Progress in Chemistry, 2016, 28(8): 1224-1237.
[8] Yu Jing, Ha Wei, Shi Yanping. Intelligent Hydrogel-Based Dual Drug Delivery System [J]. Progress in Chemistry, 2015, 27(11): 1640-1648.
[9] Han Bin, Liao Xiali, Yang Bo. Targeted Drug Delivery Systems Based on Cyclodextrins [J]. Progress in Chemistry, 2014, 26(06): 1039-1049.
[10] Zhang Lei, Liu Xiaoyan, Shen Jingjing, Lu Xiaomei, Fan Quli, Huang Wei. Application of Nanoparticles with Targeting, Triggered Release in Anti-Cancer Drug Delivery [J]. Progress in Chemistry, 2013, 25(08): 1375-1382.
[11] Yang Yiyi, Yan Zhiqiang*, Zhong Jian, He Dannong*, Lu Weiyue. Peptide-Mediated Nano Drug Delivery System for Tumor Targeting [J]. Progress in Chemistry, 2013, 25(06): 1052-1060.
[12] Huang Meiling, Wu Yaling, Zhao Pan, Yang Xiaoda*. Update of Metal-Based Drugs: Problems and Approaches for Solution [J]. Progress in Chemistry, 2013, 25(04): 650-660.
[13] Yang Huayan, Xiong Huanming, Yu Shaoning. Quantum Dots-Based Drug Delivery System [J]. Progress in Chemistry, 2012, 24(11): 2234-2246.
[14] Jiang Cheng Zhang Xiaojin Shen Zheng You Qidong. Kinesin Spindle Protein Inhibitors [J]. Progress in Chemistry, 2010, 22(01): 153-162.
[15] Dai Yani1,2|Li Ping1,3**,Wang Aiqin3 . Intelligent Drug Delivery System of Intelligent High Polymer Materials [J]. Progress in Chemistry, 2007, 19(0203): 362-369.
Viewed
Full text


Abstract

Anti-Cancer Drug Delivery System