中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (08): 1329-1338 DOI: 10.7536/PC140231 Previous Articles   Next Articles

• Review •

Advances in Mechanically Enhanced Silica Aerogel Monoliths as Thermal Insulating Materials

Shao Zaidong1, Zhang Ying1,2, Cheng Xuan*1,2   

  1. 1. Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China;
    2. Fujian Key Laboratory of Advanced Materials, Xiamen 361005, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 11372263

PDF ( 1375 ) Cited
Export

EndNote

Ris

BibTeX

As a three-dimensional nanoporous material with low density and high porosity, silica aerogel exhibits a low thermal conductivity at room temperature and becomes an ideal nanoporous super thermal insulating material. However, the poor mechanic property and fragment occurred during ambient pressure drying have greatly limited the practical applications of silica aerogel. The apparent enhancements in integrity, strength and flexibility are achieved with the new-type of silica aerogels prepared by compositing or crosslinking, which makes it possible to be applied alone in the form of monolith as thermal insulating materials. In this paper, the porous structures, basic properties and thermal insulation principles of silica aerogels are briefly introduced. The research progress of newly developed fiber reinforced composite silica aerogels, polymer crosslinked silica aerogels, and the other combined silica aerogels as monolithic thermal insulation materials are focused. Finally, the key problems in the field of silica aerogels are summarized and the future research trends are highlighted.

Contents
1 Introduction
2 Basic properties of silica aerogels
3 Principles of thermal insulation of silica aerogel
4 Silica aerogels as thermal insulating materials
5 New-type silica aerogels as thermal insulating materials
5.1 Fiber reinforced composite silica aerogels
5.2 Polymer crosslinked silica aerogels
5.3 Combined silica aerogels
6 Conclusion and outlook

CLC Number: 

[1] Schmidt M, Schwertfeger F. J. Non-Cryst. Solids, 1998, 225 (1/3): 364.
[2] Akimov Y K. Instruments and Experimental Techniques, 2003, 46 (3): 287.
[3] Pajonk G M. Colloid Polym. Sci., 2003, 281 (7): 637.
[4] Hüsing N, Schubert U. Angew. Chem. Int. Ed., 1998, 37 (1/2): 22.
[5] Koebel M, Rigacco A, Achard P. J. Sol-Gel. Sci. Technol., 2012, 63: 315.
[6] 吴国友(Wu G Y), 程璇(Cheng X), 余煜玺(Yu Y X), 张颖(Zhang Y). 化学进展(Progress in Chemistry), 2010, 22(10): 1892.
[7] Wu G Y, Yu Y, Cheng X, Zhang Y. Mater. Chem. Phys., 2011, 129: 308.
[8] Capadona L A, Meador M A B, Alunni A, Fabrizio E F, Vassilaras P, Leventis N. Polymer, 2006, 47 (16): 5754.
[9] Shao Z D, Luo F, Cheng X, Zhang Y. Mater. Chem. Phys., 2013, 141: 570.
[10] Venkateswara Rao A, Bhagat S D, Hirashima H, Pajonk G M J. Colloid Interface Sci., 2006, 300: 279.
[11] Kanamori K, Aizawa M, Nakanishi K, Hanada T. Adv. Mater., 2007, 19: 1589.
[12] Aravind P D, Soraru G D. J. Porous Mater., 2011, 18: 159.
[13] Bhagat S D, Oh C S, Kim Y H, Ahn Y S, Yeo J G. Micropor. Mesopor. Mater., 2007, 100: 350.
[14] Venkateswara Rao A, Kulkarni M M, Amalnerkar D P, Seth T. J. Non-Cryst. Solids, 2003, 330: 187.
[15] Nadargi D Y, Latthe S S, Hirashima H, Venkateswara Rao A. Micropor. Mesopor. Mater., 2009, 117: 617.
[16] Wang Z, Dai Z, Wu J, Zhao N, Xu J. Adv. Mater., 2013, 25: 4494.
[17] Kim C Y, Lee J K, Kim B I. Colloids Surf. A, 2008, 313/314: 179.
[18] 王珏(Wang J), 沈军(Shen J), Fricke J. 材料研究学报(Chinese Journal of Materials Research), 1995, 9 (6): 568.
[19] 董志军(Dong Z J), 李轩科(Li X K), 袁观明(Yuan G M). 化工新型材料(New Chemical Materials), 2006, 34 (7): 58.
[20] 杨海龙(Yang H L), 倪文(Ni W), 梁涛(Liang T), 徐国强(Xu G Q), 徐丽(Xu L). 材料工程(Materials Engineer), 2007, (7): 63.
[21] 高庆福(Gao Q F), 冯坚(Feng J), 张长瑞(Zhang C R), 冯军宗(Feng J Z), 武纬(Wu W), 姜勇刚(Jiang Y G). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2009, 37 (1): 1.
[22] Yang X G, Sun Y T, Shi D Q, Liu J L. Mater. Sci. Eng. A, 2011, 528: 4830.
[23] Meador M A B, Vivod S L, McCorkle L, Quade D, Sullivan R M, Ghosn L J, Clark N, Capadona L A. J. Mater. Chem., 2008, 18: 1843.
[24] Boday D J, Muriithi B, Stover R J, Loy D A. J. Non-Cryst. Solids, 2012, 358: 1575.
[25] Frank D, Kessler B, Zimmermann A. US 5866027, 1992.
[26] Aegerter M A, Leventis N, Koebel M M. Aerogel Handbook. New York, 2011. 655.
[27] Karout A, Buisson P, Perrard A, Pierre A C. J. Sol-Gel. Sci. Technol., 2005, 36: 163.
[28] Chandradass J, Kang S, Bae D S. J. Non-Cryst. Solids, 2008, 354: 4115.
[29] 冯坚(Feng J), 冯军宗(Feng J Z), 姜勇刚(Jiang Y G). 宇航材料工艺(Aerospace Materials & Technology), 2012, 2: 42.
[30] 王虹(Wang H), 倪星元(Ni X Y), 汤人望(Tang R W), 李洋(Li Y), 李荣年(Li R N), 王际超(Wang J C), 沈军(Shen J), 产业用纺织品(Technical Textiles), 2009, 11: 9.
[31] Paik J A, Sakamoto J, Jones S. Improved Silica Aerogel Composite Materials, (2008-09-01).[2014-01-01] http://www. techbriefs.com/component/content/article/3125.
[32] Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L. Angew. Chem., 2012, 124 (9): 2118.
[33] Tong L, Lou J, Gattass R R, He S, Chen X, Liu L, Mazur E. Nano Lett., 2005, 5 (2): 259.
[34] 刘开平(Liu K P), 梁庆宣(Liang Q X). CN 1803602, 2005.
[35] Li L, Yalcin B, Nguyen B N, Meador M A B, Cakmak M. ACS. Appl. Mater. Interf., 2009, 1: 2491.
[36] Wei T Y, Lu S Y, Chang Y C. J. Phys. Chem. C, 2009, 113: 7424.
[37] Katti A, Shimpi N, Roy S, Lu H, Fabrizio E F, Dass A, Capadona L A, Leventis N. Chem. Mater., 2005, 18 (2): 285.
[38] Meador M A B, Capadona L A, McCorkle L, Papadopoulos D S, Leventis N. Chem. Mater., 2007, 19 (9): 2247.
[39] Ilhan F, Fabrizio E F, McCorkle L, Scheiman D A, Dass A, Palczer A, Meador M B, Johnston J C, Leventis N. J. Mater. Chem., 2006, 16: 3046.
[40] Meador M A B, Fabrizio E F, Ilhan F, Dass A, Zhang G, Vassilaras P, Johnston J C, Leventis N. Chem. Mater., 2005, 17 (5): 1085.
[41] Shajesh P, Smitha S, Aravind P R, Warrier K G K. J. Colloid Interface Sci., 2009, 336 (2): 691.
[42] Shao Z D, Wu G Y, Cheng X, Zhang Y. J. Non-Cryst. Solids, 2012, 358 (18/19): 2612.
[43] Sabri F, Leventis N, Hoskins J, Schuerger A C, Sinden-Redding M, Britt D, Duran R A. Adv. Space Res., 2011, 47: 419.
[44] Mulik S, Sotiriou-Leventis C, Churu G, Lu H, Leventis N. Chem. Mater., 2008, 20 (15): 5035.
[45] Meador M A B, Scherzer C M, Vivod S L, Quade D, Nguyen B N. ACS. Appl. Mater. Interf., 2010, 2 (7): 2162.
[46] Yang H L, Kong X M, Zhang Y R, Wu C C, Cao E X. J. Non-Cryst. Solids, 2011, 357 (19/20): 3447.
[47] Tamaki R, Choi J, Laine R M. Chem. Mater., 2003, 15 (3): 793.
[48] Randall J P, Meador M A B, Jana S C. J. Mater. Chem. A, 2013, 1: 6642.
[49] Leventis N. Acc. Chem. Res., 2007, 40: 874.
[50] Xu Y Z, Sui Z Y, Xu B, Duan H, Zhang X T. J. Mater. Sci., 2012, 22 (17): 8579.
[51] Sadekar A G, Mahadik S S, Bang A N, Larimore Z J, Wisner C A, Bertino M F, Kalkan A K, Mang J T, Sotiriou-Leventis C, Leventis N. Chem. Mater., 2011, 24 (1): 26.
[52] Lee J K, Gould G L, Rhine W. J. Sol-Gel. Sci. Technol., 2009, 49 (2): 209.
[53] Leventis N, Sotiriou-Leventis C, Mohite D P, Larimore Z J, Mang J T, Churu G, Lu H. Chem. Mater., 2011, 23 (8): 2250.
[54] Meador M A B, Malow E J, Silva R, Wright S, Quade D, Vivod S L, Guo H, Guo J, Cakmak M. ACS. Appl. Mater. Interf., 2012, 4 (2): 536.
[55] Rhine W, Wang J, Begag R. US 7074880, 2006.
[56] Guo H, Meador M A B, McCorkle L, Quade D J, Guo J, Hamilton B, Cakmak M, Sprowl G. ACS. Appl. Mater. Interf., 2011, 3 (2): 546.
[57] Nguyen B N, Meador M A B, Medoro A, Arendt V, Randall J, McCorkle L, Shonkwiler B. ACS. Appl. Mater. Interf., 2010, 2 (5): 1430.

[1] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[2] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[3] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[4] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[5] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[6] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[7] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[8] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[9] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[10] Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang. Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes [J]. Progress in Chemistry, 2021, 33(9): 1473-1481.
[11] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[12] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[13] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[14] Tianyong Zhang, Wei Wu, Jian Zhu, Bin Li, Shuang Jiang. Stretchable Conductive Polymer Composites Prepared with Nano-Carbon Fillers [J]. Progress in Chemistry, 2021, 33(3): 417-425.
[15] Xiuting Dong, Wen Zhang, Song Zhao, Xinlei Liu, Yuxin Wang. Shaping Methods for Metal-Organic Framework Composites [J]. Progress in Chemistry, 2021, 33(12): 2173-2187.