中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (07): 1233-1243 DOI: 10.7536/PC140227 Previous Articles   Next Articles

• Review •

Applications of Carbon Nanotubes and Graphene in the Energy Storage Batteries

Li Jian1,2, Guan Yibiao1, Fu Kai1, Su Yuefeng*2,3, Bao Liying2,3, Wu Feng2,3   

  1. 1. China Electric Power Research Institute, Beijing 100192, China;
    2. School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081, China;
    3. National Development Center of High Technology Green Materials, Beijing 100081, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the State Key Development Program for Basic Research of China (No.2009CB220100),the National Natural Science Foundation of China(No.51102018, 21103011),the National High Technology Research and Development Program of China(No.2011AA11A235,SQ2010AA1123116001) and the Science and Technology Project of State Grid Corporation of China(No. DG71-13-033)

PDF ( 4061 ) Cited
Export

EndNote

Ris

BibTeX

The ever-increasing demand for energy and environmental resources is both an opportunity and a severe challenge for the development of energy storage batteries. Nano-carbon materials such as carbon nanotubes and graphene are widely used in the electrode technology of energy storage batteries because of their many useful properties, including high electrical conductivity, outstanding mechanical strength, and unique morphology and structure characteristics. This paper provides an overview about the most recent progress in the applications of carbon nanotubes and graphene (e. g., composite electrode materials, anode active materials and conductive additives in lithium ion batteries, as well as composite conductive matrices in novel Li-S batteries). The electrochemical performance of the batteries affected by their different application modes in terms of lithium storage capability, rate capacity and cycle life are highlighted. Discussions on challenges and perspectives of these carbon materials in this exciting field such as exploring low cost and environmental friendly synthesis techniques for high-quality materials, improving the dispersion technology for efficient design of hybrid nanostructured materials and seeking for new application modes are also presented.

Contents
1 Introduction
2 Used as composite electrode materials in lithium-ion batteries
2.1 Carbon nanotubes based composite electrode materials
2.2 Graphene based composite electrode materials
3 Used as anode active materials in lithium-ion batteries
3.1 Carbon nanotubes as anode active materials
3.2 Graphene based materials as anode active materials
4 Used as conductive additives in lithium-ion batteries
5 Used as composite conductive matrices in novel Li-S batteries
5.1 Carbon nanotubes/sulfur composites
5.2 Graphene based materials/sulfur composites
6 Conclusion and outlook

CLC Number: 

[1] 邹勇进(Zou Y J), 向翠丽(Xiang C L), 邱树君(Qiu S J), 褚海亮(Chu H L), 孙立贤(Sun L X), 徐芬(Xu F). 化学进展(Progress in Chemistry), 2013, 25: 115.
[2] Li X, Wei B Q. Nano Energy, 2013, 2(2): 159.
[3] Li H, Wang Z X, Chen L Q, Huang X. Adv. Mater., 2009, 21(45): 4539.
[4] 刘张波(Liu Z B), 刘蓓蓓(Liu P P), 夏长荣(Xia C R). 化学进展(Progress in Chemistry), 2013, 25: 1821.
[5] Nishi Y. The Chemical Record, 2001, 1: 406.
[6] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997, 144(4): 1188.
[7] Zhang Y J, Lu L G, Han X B, Li J, Ouyang M. J. Power Sources, 2013, 226(15): 33.
[8] 王维坤(Wang W K), 余仲宝(Yu Z B), 苑克国(Yuan K G), 王安邦(Wang A B), 杨裕生(Yang Y S). 化学进展(Progress in Chemistry), 2011, 23: 540.
[9] Yin Y X, Xin S, Guo Y G, Wan L J. Angew. Chem. Int. Ed., 2013, 52: 2.
[10] Iijima S. Nature, 1991, 354: 56.
[11] Lota G, Fic K, Frackowiak E. Energy Environ. Sci., 2011, 4(5): 1592.
[12] Saito N, Usui Y, Aoki K. Chem. Soc. Rev., 2009, 38(7): 1897.
[13] Schnorr J M, Swager T M. Chem. Mater., 2011, 23(3): 646.
[14] Ando Y, Zhao X, Shimoyama H. Int. J. Inorg. Mater., 1999, 1(1): 77.
[15] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5659): 666.
[16] Pumera M. Energy Environ. Sci., 2011, 4(3): 668.
[17] Moon I K, Lee J, Rodney S, Lee H. Nat. Commun., 2010, 1: 73.
[18] Liu X M, Huang Z D, Oh S, Ma P C, Chan P C, Vedam G K, Kang K, Kim J K. J. Power Sources, 2010, 195: 4290.
[19] Zhou H, Liu L, Wang X, Liang F, Bao S, Lv D, Tang Y, Jia D. J. Mater. Chem. A, 2013, 1: 8525.
[20] Yang J, Wang J, Li X, Wang D, Liu J, Liang G, Gauthier M, Li Y, Geng D, Li R, Sun X. J. Mater. Chem., 2012, 22: 7537.
[21] Xia H, Ragavendran K R, Xie J, Lu L. J. Power Sources, 2012, 212: 28.
[22] Jia X, Yan C, Chen Z, Wang R, Zhang Q, Guo L,Wei F, Lu Y. Chem. Commun., 2011, 47: 9669.
[23] He Y, Huang L, Cai J S, Zheng X M, Sun S G. Electrochim. Acta, 2010, 55: 1140.
[24] Ko S, Lee J I, Yang H S, Park S, Jeong U. Adv. Mater., 2012, 24: 4451.
[25] Forney M W, Ganter M J, Staub J W, Ridgley R D, Landi B J. Nano Lett., 2013, 13: 4158.
[26] Dileo R A, Frisco S, Ganter M J, Rogers R E, Raffaelle R P, Landi B J. J. Phys. Chem. C, 2011, 115: 22609.
[27] Bindumadhavan K, Srivastava S K, Mahanty S. Chem. Commun., 2013, 49: 1823.
[28] Reddy A L, Shaijumon M M, Gowda S R, Ajayan P M. Nano Lett., 2009, 9(3): 1002.
[29] Liu H, Wang G, Park J, Wang J, Liu H, Zhang C. Electrochim. Acta, 2009, 54(6): 1733.
[30] Wu Y, Wei Y, Wang J, Jiang K, Fan S. Nano Lett., 2013, 13: 818.
[31] Ye J, Zhang H, Yang R, Li X, Qi L. Small, 2010, 6(2): 296.
[32] Li Z, Liu N, Wang X,Wang C, Qi Y, Yin L. J. Mater. Chem., 2012, 22(32): 16640.
[33] Zhou G, Li L, Zhang Q, Li N, Li F. Phys. Chem. Chem. Phys., 2013, 15(15): 5582.
[34] Evanoff K, Khan J, Balandin A A, Magasinski A, Ready W J, Fuller T F, Yushin G. Adv. Mater., 2012, 24(4): 533.
[35] Seng K H, Park M H, Guo Z P, Liu H K, Cho J. Angew. Chem. Int. Ed., 2012, 51(23): 5657.
[36] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nature Nanotech., 2008, 3(2): 101.
[37] Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Carlsson L S, Blighe F M, De S, Wang Z, Mcgovern I T, Duesberg G S, Coleman J N. J. Am. Chem. Soc., 2009, 131(10): 3611.
[38] Xiang H, Zhang K, Ji G, Lee J Y, Zou C, Chen X, Wu J. Carbon, 2011, 49(5): 1787.
[39] Xue D J, Xin S, Yan Y, Jiang K C, Yin Y X, Guo Y G, Wan L J. J. Am. Chem. Soc., 2012, 134(5): 2512.
[40] Ji L, Tan Z, Kuykendall T, An E J, Fu Y, Battaglia V, Zhang Y. Energy Environ. Sci., 2011, 4(9): 3611.
[41] Wang H, Cui L F, Yang Y, Casalongue H S, Robinson J T, Liang Y, Cui Y, Dai H J. J. Am. Chem. Soc., 2010, 132(40): 13978.
[42] Wang X, Zhou X, Yao K C, Zhang Z, Liu Z. Carbon, 2011, 49(1): 133.
[43] Kim H, Seo D H, Kim S W, Kim J, Kang K. Carbon, 2011, 49(1): 326.
[44] Wang R, Xu C, Sun J, Gao L, Lin C. J. Mater. Chem. A, 2013, 1(5): 1794.
[45] Lu L Q, Wang Y. Electrochem. Commun., 2012, 14(1): 82.
[46] Cao H, Li B, Zhang J, Lian F, Kong X, Qu M. J. Mater. Chem., 2012, 22(19): 9759.
[47] Sun Y, Hu X, Luo W, Huang Y. ACS Nano, 2011, 5(9): 7100.
[48] Liu H, Yang G, Zhang X, Gao P, Wang L, Fang J, Pinto J, Jiang X. J. Mater. Chem., 2012, 22(22): 11039.
[49] Lee J W, Lim S Y, Jeong H M, Hwang T H, Kang J K, Choi J W. Energy Environ. Sci., 2012, 5(12): 9889.
[50] Zhou X, Wang F, Zhu Y, Liu Z. J. Mater. Chem., 2011, 21(10): 3353.
[51] Shi Y, Chou S L, Wang J Z, Wexler D, Li H J, Liu H K, Wu Y. J. Mater. Chem., 2012, 22: 16465.
[52] Xu H, Cheng B, Wang Y. Inter. J. Electrochem. Sci., 2012, 7(11): 10627.
[53] Jiang K C, Xin S, Lee J S, Kin J, Xiao X L, Guo Y G. Phys. Chem. Chem. Phys., 2012, 14: 2934.
[54] Kumar T P, Ramesh R, Lin Y Y, Fey G. Electrochem. Commun., 2004, 520.
[55] Kawasaki S, Hara T, Iwai Y, Suzuki Y. Mater. Lett., 2008, 62: 2917.
[56] Chew S Y, Ng S H, Wang J, Novak P, Krumeich F, Chou S L, Chen J, Liu H K. Carbon, 2009, 47: 2976.
[57] Zhou J, Song H, Fu B, Wu B, Chen X. J. Mater. Chem., 2010, 20(14): 2794.
[58] Meunier V, Kephart J, Roland C, Bernholc J. Phys. Rev. Lett., 2002, 88: 075566
[59] Schauerman C M, Ganter M J, Gaustad G, Babbitt C W, Raffaelle R P, Landi B J. J. Mater. Chem., 2012, 22: 1200.
[60] Lahiri I, Oh S W, Hwang J Y, Cho S, Sun Y K, Banerjee R, Choi W. ACS Nano, 2010, 4(6): 3440.
[61] Kang C, Lahiri I, Baskaran R, Kim W G, Sun Y K, Choi W. J. Power Sources, 2012, 219: 364.
[62] Welna D T, Qu L, Taylor B E, Dai L, Durstock M F. J. Power Sources, 2011, 196: 1455.
[63] Gao B, Bower C, Lorentzen J D, Kleinhammes A, Tang X P, McNeil L E, Wu Y, Zhou O. Chem. Phys. Lett., 2000, 327: 69.
[64] Yang S, Huo J, Song H, Chen X. Electrochim. Acta, 2008, 53: 2238.
[65] Shimoda H, Gao B, Tang X B, Kleinhammes A, Fleming L, Wu Y, Zhou O. Phys. Rev. Lett., 2002, 88: 015502.
[66] Eom J Y, Kwon H S, Liu J, Zhou O. Carbon, 2004, 42: 2589.
[67] Bulusheva L G, Okotrub A V, Kurenya A G, Zhang H, Zhang H, Chen X, Song H. Carbon, 2011, 49: 4013.
[68] Li X, Liu J, Zhang Y, Li Y, Liu H, Meng X, Yang J, Geng D, Wang D, Li R, Sun X. J. Power Sources, 2012, 197(1): 238.
[69] Shin W H, Jeong H M, Kin B G, Kang J K, Choi J W. Nano Lett., 2012, 12: 2283.
[70] Garau C, Frontera A, Quinonero D, Costa A, Ballester P, Deya P M. Chem. Phys. Lett., 2003, 374: 548.
[71] Wang X X, Wang J N, Chang H, Zhang Y F. Adv. Funct. Mater., 2007, 17: 3613.
[72] Oktaviano H S, Yamada K, Waki K. J. Mater. Chem., 2012, 22: 25167.
[73] Bhardwaj T, Antic A, Pavan B, Barone V, Fahlman B D. J. Am. Chem. Soc., 2010, 132: 12556.
[74] Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z. Chem. Mater., 2009, 21: 3136.
[75] Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H. Electrochim. Acta, 2010, 55: 3909.
[76] Wang G, Shen X, Yao J, Park J. Carbon, 2009, 47: 2049.
[77] Ning G, Xu C, Cao Y, Zhu X, Jiang Z, Fan Z, Qian W, Wei F, Gao J. J. Mater. Chem. A, 2013, 1: 408.
[78] Wu Z S, Ren W, Xu L, Li F, Cheng H M. ACS Nano, 2011, 5(7): 5463.
[79] Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubby M, Ajayan P M. ACS Nano, 2010, 4(11): 6337.
[80] Wang Z L, Xu D, Wang H G, Wu Z, Zhang X B. ACS Nano, 2013, 7(3): 2422.
[81] Zhang B, Qin X, Li G R, Gao X P. Energy Environ. Sci., 2010, 3(10): 1531.
[82] Feng Y. Mater. Chem. Phys., 2010, 121(1/2): 302.
[83] Zhu N, Liu W, Xue M, Xie Z, Zhao D, Zhang M, Chen J, Cao T. Electrochim. Acta, 2010, 55(20): 5813.
[84] Varzi A, Taubert C, Mehrens M W. Electrochim. Acta, 2012, 78(1): 17.
[85] Chan C K, Patel P N, O'Connell M J, Korgel B A, Cui Y. ACS Nano, 2010, 4(3): 1443.
[86] Su F Y, You C, He Y B, Lv W, Cui W, Jin F, Li B, Yang Q H, Kang F. J. Mater. Chem., 2010, 20(43): 9644.
[87] Ji X, Lee K T, Nazar L F. Nat. Mater., 2009, 8: 500.
[88] Yuan L, Yuan H, Qiu X, Chen L, Zhu W. J. Power Sources, 2009, 189: 1141.
[89] Dorfler S, Hagen M, Althues H, Tubke J, Kaskel S, Hoffmann M J. Chem. Commun., 2012, 48: 4097.
[90] Guo J, Xu Y, Wang C. Nano Lett., 2011, 11: 4288.
[91] Moon S, Jung Y H, Jung W K, Jung D S, Choi J W, Kim D K. Adv. Mater., 2013, 25: 6547.
[92] Wei W, Wang J, Zhou L, Yang J, Schumann B, Nuli Y. Electrochem. Commun., 2011, 13: 399.
[93] Wang C, Chen H, Dong W, Ge J, Lu W, Wu X, Guo L, Chen L. Chem. Commun., 2014, 50: 1202.
[94] Kazazi A, Vaezi M R, Kazemzadeh A. Ionics, 2013, doi 10.1007/s11581-013-1044-5
[95] Yin L, Wang J, Yang J, Nuli Y. J. Mater. Chem., 2011, 21: 6807.
[96] Xin S, Gu L, Zhao N H, Yin Y X, Zhou L J, Guo Y G, Wan L J. J. Am. Chem. Soc., 2012, 134: 18510.
[97] Wang J Z, Lu L, Choucair M, Stride J A, Xu X, Liu H K. J. Power Sources, 2011, 196: 7030.
[98] Evers S, Nazar L F. Chem. Commun., 2012, 48: 1233.
[99] Lin T, Tang Y, Wang Y, Bi H, Liu Z, Huang F, Xie X, Jiang M. Energy Environ. Sci., 2013, 6: 1283.
[100] Zhou G, Yin L C, Wang D W, Li L, Pei S, Gentle I R, Li F, Cheng H M. ACS Nano, 2013, 7(6): 5367.
[101] Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns E J, Zhang Y. J. Am. Chem. Soc., 2011, 133: 18522.
[102] Wang H, Yang Y, Liang Y, Robinson J T, Li Y, Jackson A, Cui Y, Dai H. Nano Lett., 2011, 11: 2644.
[103] Ding B, Yuan C, Shen L, Xu G, Nie P, Lai Q, Zhang X. J. Mater. Chem. A, 2013, 1: 1096.
[104] Zu C, Manthiram A. Adv. Energy Mater., 2013, 3: 1008.
[105] Zhao M Q, Liu X F, Zhang Q, Tian G L, Huang J Q, Zhu W, Wei F. ACS Nano, 2012, 6: 10759.
[106] Chen R J, Zhao T, Lu J, Wu F, Li L, Chen J, Tan G Q, Ye Y, Amine K. Nano Lett., 2013, 13: 4642.

[1] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[2] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[3] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[4] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[5] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[6] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[7] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[8] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[9] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[10] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[11] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[12] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[13] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.
[14] Wei Zhang, Xiaopeng Qi, Sheng Fang, Jianhua Zhang, Bimeng Shi, Juanyu Yang. Effects of Carbon on Silicon-Carbon Composites in Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 454-466.
[15] Le Gong, Rong Yang, Rui Liu, Liping Chen, Yinglin Yan, Zufei Feng. Application of Graphene Quantum Dots in Energy Storage Devices [J]. Progress in Chemistry, 2019, 31(7): 1020-1030.