中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (08): 1361-1368 DOI: 10.7536/PC140225 Previous Articles   Next Articles

• Review •

Non-Covalent Separation of Optically Active Single-Walled Carbon Nanotubes

Li Yuda1, Wang Xunchang1, Lv Renliang1, Wang Feng*1,2   

  1. 1. Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China;
    2. Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Wuhan 430073, China
  • Received: Revised: Online: Published:
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (No. 51103111), the Program for New Century Excellent Talents in University (No. NCET-12-0714) and the Scientific Research Starting Foundation for the Returned Overseas Chinese Scholars, Ministry of Education, China

PDF ( 751 ) Cited
Export

EndNote

Ris

BibTeX

Single-walled carbon nanotubes (SWNTs) have been attracting extensive interest because of their novel and unique chemical and physical properties. However, the present technologies for SWNTs synthesis always produce samples with both enantiomers in equal amounts. Since the optically active properties of SWNTs are closely correlated to their helical structures, structural control of SWNTs is very important for their potential applications in photonics and photoelectronics. A wide variety of methods have been devised so far for the non-covalent separation of SWNTs according to their left-and right-handed structure. In this paper, they are classified into the following five sections according to the separation methods: ion exchange chromatography, nanotweezers selective extraction, density-gradient ultracentrifugation (DGU), conjugated polymers wrapping and small molecules adsorption. We reviewed the recent advances in this research field, including the separation mechanisms. The relationship between these methods and the results of the optical and (n,m) enhancements of the extracted SWNTs is analyzed, and it may be useful for designing the novel host molecules to obtain single structure SWNTs in view of practical applications. At last, the existing problems and the direction of development of the regarding studies are pointed out.

Contents
1 Introduction
2 Helical structures of SWNTs
3 Non-covalent methods to separate chiral SWNTs
3.1 Ion exchange chromatography
3.2 Nanotweezers selective extraction
3.3 Density-gradient ultracentrifugation
3.4 Conjugated polymers wrapping
3.5 Small molecules adsorption
4 Conclusion and outlook

CLC Number: 

[1] Iijima S, Ichihashi T. Nature, 1993, 363: 603.
[2] Bethune D S, Klang C H, de Vries M S, Gorman G, Savoy R, Vazquez J, Beyers R. Nature, 1993, 363: 605.
[3] Baughman R H, Zakhidov A A, de Heer W A. Science, 2002, 297: 787.
[4] Tans S J, Devoret M H, Dai H, Thess A, Smalley R E, Geerligs L J, Dekker C. Nature, 1997, 386: 474.
[5] Cress C. Electronics, 2014, 3: 22.
[6] Javey A, Guo J, Farmer D B, Wang Q, Yenilmez E, Gordon R G, Lundstrom M, Dai H. Nano Lett., 2004, 4: 1319.
[7] Rosenblatt S, Yaish Y, Park J, Gore J, Sazonova V, McEuen P L. Nano Lett., 2002, 2: 869.
[8] Tans S J, Verschueren A R M, Dekker C. Nature, 1998, 393: 49.
[9] Zhu H, Wei J, Wang K, Wu D. Sol. Energ. Mater. Sol. C, 2009, 93: 1461.
[10] Sanchez-Castillo A, Roman-Velazquez C E, Noguez C. Phys. Rev. B, 2006, 73: 045401.
[11] Sanchez-Castillo A, Noguez C. J. Phys. Chem. C, 2010, 114: 9640.
[12] Harutyunyan A R, Chen G, Paronyan T M, Pigos E M, Kuznetsov O A, Hewaparakrama K, Kim S M, Zakharov D, Stach E A, Sumanasekera G U. Science, 2009, 326: 116.
[13] Hong G, Zhang B, Peng B, Zhang J, Choi W M, Choi J Y, Kim J M, Liu Z. J. Am. Chem. Soc., 2009, 131: 14642.
[14] Huang S, Cai Q, Chen J, Qian Y, Zhang L. J. Am. Chem. Soc., 2009, 131: 2094.
[15] Li P, Zhang J. J. Mater. Chem., 2011, 21: 11815.
[16] 李盼(Li P), 张锦(Zhang J). 化学进展(Progress in Chemistry), 2013, 25(2/3): 167.
[17] Wang Y, Liu Y, Li X, Cao L, Wei D, Zhang H, Shi D, Yu G, Kajiura H, Li Y. Small, 2007, 3: 1486.
[18] Wen Q, Qian W, Wei F, Liu Y, Ning G, Zhang Q. Chem. Mater., 2007, 19: 1226.
[19] Yao Y, Li Q, Zhang J, Liu R, Jiao L, Zhu Y T, Liu Z. Nat. Mater., 2007, 6: 283.
[20] Zhao M Q, Tian G L, Zhang Q, Huang J Q, Nie J Q, Wei F. Nanoscale, 2012, 4: 2470.
[21] Zheng L X, O'Connell M J, Doorn S K, Liao X Z, Zhao Y H, Akhadov E A, Hoffbauer M A, Roop B J, Jia Q X, Dye R C, Peterson D E, Huang S M, Liu J, Zhu Y T. Nat. Mater., 2004, 3: 673.
[22] Chen Y B, Shen Z Y, Xu Z W, Hu Y, Xu H T, Wang S, Guo X L, Zhang Y F, Peng L M, Ding F, Liu Z F, Zhang J. Nat. Commun., 2013, 4: 2205.
[23] Campidelli S, Meneghetti M, Prato M. Small, 2007, 3: 1672.
[24] Hersam M C. Nat. Nanotechnol., 2008, 3: 387.
[25] Komatsu N, Wang F. Materials, 2010, 3: 3818.
[26] Krupke R, Hennrich F. Adv. Engine. Mater., 2005, 7: 111.
[27] Liu C H, Zhang H L. Nanoscale, 2010, 2: 1901.
[28] Papadimitrakopoulos F, Ju S Y. Nature, 2007, 450: 486.
[29] Rao C, Voggu R, Govindaraj A. Nanoscale, 2009, 1: 96.
[30] 蔡瑛(Cai Y), 严志宏(Yan Z H), 字敏(Zi M), 丁惠(Ding H), 袁黎明(Yuan L M). 化学进展(Progress in Chemistry), 2008, 20(9): 1391.
[31] 李红波(Li H B), 张静(Zhang J), 金赫华(Jin H H), 李清文(Li Q W). 物理化学学报(Acta Physico-Chimica Sinica), 2012, 28(10): 2447.
[32] 林高锋(Lin G F), 孟令杰(Meng L J), 张晓科(Zhang X K), 路庆华(Lu Q H). 化学进展(Progress in Chemistry), 2010, 22(2/3): 331.
[33] 王国建(Wang G J), 屈泽华(Qu Z H). 化学进展(Progress in Chemistry), 2006, 18(10): 1305.
[34] Niyogi S, Hamon M, Hu H, Zhao B, Bhowmik P, Sen R, Itkis M, Haddon R. Acc. Chem. Res., 2002, 35: 1105.
[35] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chem. Rev., 2006, 106: 1105.
[36] Banerjee S, Wong S S. J. Am. Chem. Soc., 2004, 126: 2073.
[37] Nair N, Kim W J, Usrey M L, Strano M S. J. Am. Chem. Soc., 2007, 129: 3946.
[38] Zhang H, Liu Y, Cao L, Wei D, Wang Y, Kajiura H, Li Y, Noda K, Luo G, Wang L, Zhou J, Lu J, Gao Z. Adv. Mater., 2009, 21: 813.
[39] Collins P G, Arnold M S, Avouris P. Science, 2001, 292: 706.
[40] Antaris A L, Seo J W T, Green A A, Hersam M C. ACS Nano, 2010, 4: 4725.
[41] Arnold M S, Green A A, Hulvat J F, Stupp S I, Hersam M C. Nat. Nanotechnol., 2006, 1: 60.
[42] Lemasson F, Berton N, Tittmann J, Hennrich F, Kappes M M, Mayor M. Macromolecules, 2011, 45: 713.
[43] Li Y, Rahman A, Liu G, Xiong Z, Koezuka K, Xu Z, Komatsu N, Wang F. Materials, 2013, 6: 3064.
[44] Nish A, Hwang J Y, Doig J, Nicholas R J. Nat. Nanotechnol., 2007, 2: 640.
[45] Sturzl N, Hennrich F, Lebedkin S, Kappes M M. J. Phys. Chem. C, 2009, 113: 14628.
[46] Tanaka T, Jin H, Miyata Y, Fujii S, Suga H, Naitoh Y, Minari T, Miyadera T, Tsukagoshi K, Kataura H. Nano Lett., 2009, 9: 1497.
[47] Tu X, Manohar S, Jagota A, Zheng M. Nature, 2009, 460: 250.
[48] Wang F, Matsuda K, Rahman A M, Kimura T, Komatsu N. Nanoscale, 2011, 3: 4117.
[49] Rahman A F M M, Wang F, Matsuda K, Kimura T, Komatsu N. Chem. Sci., 2011, 2: 862.
[50] Liu G, Rahman A F M M, Chaunchaiyakul S, Kimura T, Kuwahara Y, Komatsu N. Chem. Eur. J., 2013, 19: 16221.
[51] Maeda Y, Kimura S, Kanda M, Hirashima Y, Hasegawa T, Wakahara T, Lian Y, Nakahodo T, Tsuchiya T, Akasaka T. J. Am. Chem. Soc., 2005, 127: 10287.
[52] Dukovic G, Balaz M, Doak P, Berova N D, Zheng M, McLean R S, Brus L E. J. Am. Chem. Soc., 2006, 128: 9004.
[53] Peng X, Wang F, Bauri A K, Rahman A, Komatsu N. Chem. Lett., 2010, 39: 1022.
[54] Peng X, Komatsu N, Bhattacharya S, Shimawaki T, Aonuma S, Kimura T, Osuka A. Nat. Nanotechnol., 2007, 2: 361.
[55] Peng X, Komatsu N, Kimura T, Osuka A. J. Am. Chem. Soc., 2007, 129: 15947.
[56] Peng X, Komatsu N, Kimura T, Osuka A. ACS Nano, 2008, 2: 2045.
[57] Wang F, Matsuda K, Rahman A F M M, Peng X, Kimura T, Komatsu N. J. Am. Chem. Soc., 2010, 132: 10876.
[58] Liu G, Wang F, Chaunchaiyakul S, Saito Y, Bauri A K, Kimura T, Kuwahara Y, Komatsu N. J. Am. Chem. Soc., 2013, 135: 4805.
[59] Green A, Duch M, Hersam M. Nano Res., 2009, 2: 69.
[60] Marquis R, Kulikiewicz K, Lebedkin S, Kappes M M, Mioskowski C, Meunier S, Wagner A. Chem. Eur. J., 2009, 15: 11187.
[61] Ghosh S, Bachilo S M, Weisman R B. Nat. Nanotechnol., 2010, 5: 443.
[62] Ghosh S, Bachilo S M, Weisman R B. Fullerenes, Nanotubes and Carbon Nanostructures, 2013, 22: 269.
[63] Green A A, Hersam M C. Adv. Mater., 2011, 23: 2185.
[64] Deria P, von Bargen C D, Olivier J H, Kumbhar A S, Saven J G, Therien M J. J. Am. Chem. Soc., 2013, 135: 16220.
[65] Akazaki K, Toshimitsu F, Ozawa H, Fujigaya T, Nakashima N. J. Am. Chem. Soc., 2012, 134: 12700.
[66] Peng X, Wang F, Kimura T, Komatsu N, Osuka A. J. Phys. Chem. C, 2009, 113: 9108.
[67] Ju S Y, Abanulo D C, Badalucco C A, Gascón J A, Papadimitrakopoulos F. J. Am. Chem. Soc., 2012, 134: 13196.

[1] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[2] Fu Jing, Wang Meng, Liu Weixi, Chen Tao. Latest Advances of Microbial Production of 2,3-Butanediol [J]. Progress in Chemistry, 2012, 24(11): 2268-2276.
[3] Lin Gaofeng Meng Lingjie Zhang Xiaoke Lu Qinghua. Non-Covalent Separation of Metallic and Semiconducting Single-Walled Carbon Nanotubes [J]. Progress in Chemistry, 2010, 22(0203): 331-337.