中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (08): 1352-1360 DOI: 10.7536/PC140212 Previous Articles   Next Articles

• Review •

Syntheses and Applications of Hybrid Mesoporous Silica Membranes

Bian Shujuan, Wu Hongqing, Jiang Xuheng, Long Yafeng, Chen Yong*   

  1. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China(No. 21005049) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry(No. ZX2008-04)

PDF ( 862 ) Cited
Export

EndNote

Ris

BibTeX

Hybrid mesoporous silica membranes, in short HMSMs, are a kind of novel membrane materials with unique structure of pores-in-pores synthesized by sol-gel, evaporation-induced self-assembly, aspiration-induced infiltration, counter diffusion self-assembly, vapor-phase synthesis and microwave-assisted synthesis methods. Such hybrid mesoporous silica membranes are composed of mesoporous silica materials inside the confined channels of porous membranes including organic porous membranes and inorganic porous membranes employed as the hard templates. In addition, various surfactants are used as the structure directing agents (SDA). Due to the different structure of HMSMs with pores-in-pores from those conventional mesoporous silica membranes and their attractively potential applications in the membrane-based adsorption, filtration and catalysis etc., those hybrid mesoporous silica membranes have attracted great attention during the past decade. This review focuses on the recent developments of this kind of novel hybrid membranes including the synthesis methods and the applications in the membrane-based nanofiltration, templated-syntheses of nanomaterials, enzyme immobilization, artificial biomembrane, sensor, reactor and drug delivery etc. Additionally, some problems found in the syntheses and the applications of such hybrid mesoporous silica membranes are analyzed and concluded in this review. Moreover, the development prospect of this kind of hybrid mesoporous silica membranes is discussed.

Contents
1 Introduction
2 Syntheses of hybrid mesoporous silica membrane
2.1 Sol-gel method
2.2 Evaporation-induced self-assembly method
2.3 Aspiration-induced infiltration method
2.4 Counter diffusion self-assembly method
2.5 Vapor-phase synthesis method
2.6 Microwave-assisted synthesis method
3 Applications of hybrid mesoporous silica membranes
3.1 Membrane-based nanofiltration
3.2 Templated-syntheses of nanomaterials
3.3 Enzyme immobilization, artificial biomembrane, sensor and drug delivery
3.4 Catalysis and membrane reactor
4 Conclusion and outlook

CLC Number: 

[1] 张学骜(Zhang X A),刘长利(Liu C L),钱斯文(Xian S W),吴晓森(Wu X S),王建方(Wang J F),吴文健(Wu W J).化学进展(Progress in Chemistry), 2006, 18(10): 1322.
[2] 张倩(Zhang Q),单锋(Shan F),陆学民(Lu X M),路庆华(Lu Q H).化学进展(Progress in Chemistry), 2012, 24(4): 492.
[3] Yang Z L, Niu Z W, Cao X Y, Yang Z Z, Lu Y F, Hu Z B, Han C C. Angew. Chem. Int. Ed., 2003, 42: 4201.
[4] Wu Y Y, Cheng G S, Katsov K, Sides S W, Wang J F, Tang J, Fredrickson G H, Moskovits M, Stucky G D. Nat. Mater., 2004, 3: 816.
[5] 龚志红(Gong Z H),姬广斌(Ji G B),郑明波(Zheng M B), 高婷婷(Gao T T).材料导报(Materials Review),2010, 24(6): 32.
[6] Ji G B, Gong Z H, Liu Y S, Chang X F, Du Y W, Qamar M. Solid State Commun., 2011, 151: 1151.
[7] Platschek B, Petkov N, Himsl D, Zimdars S, Li Z, Köhn R, Bein T. J. Am. Chem. Soc., 2008, 130: 17362.
[8] Platschek B, Keilbach A, Bein T. Adv. Mater., 2011, 23: 2395.
[9] Keilbach A, Moses J, Köhn R, Döblinger M, Bein T. Chem. Mater., 2010, 22: 5430.
[10] Petkov N, Platschek B, Morris M A, Holmes J D, Bein T. Chem. Mater., 2007, 19: 1376.
[11] Cauda V, Torre B, Falqui A, Canavese G, Stassi S, Bein T, Pizzi M. Chem. Mater., 2012, 24: 4215.
[12] Yamaguchi A, Uejo F, Yoda T, Uchida T, Tanamura Y, Yamashita Y, Teramae N. Nat. Mater., 2004, 3: 337.
[13] Itoh T, Ishii R, Hanaoka T, Hasegawa Y, Mizuguchi J, Shiomi T, Shimomura T, Yamaguchi A, Kaneda H, Teramae N, Mizukami F. J. Mol. Catal. B: Enzym., 2009, 57(1/4): 183.
[14] Fu W S, Yamaguchi A, Kaneda H, Teramae N. Chem. Commun., 2008, 853.
[15] El-Safty S A, Mekawy M, Yamaguchi A, Shahat A, Ogawa K, Teramae N. Chem. Commun., 2010, 46: 3917.
[16] Yamaguchi A, Teramae N. Anal. Sci., 2008, 24: 25.
[17] Liang Z J, Susha A S. Chem. Eur. J., 2004, 10: 4910.
[18] 朱瑾瑜(Zhu J Y), 沈逸 (Shen Y),吴龙(Wu L), 甘思文(Gan S W), 陈安琪(Chen A Q),沈祝萍(Shen Z P),潘小庆(Pan X Q),陈勇(Chen Y).化学学报(Acta Chimica Sinica), 2010, 68(21): 2231.
[19] Suzuki N, Yamauchi Y. J. Nanomater., 2010, 2010: 1.
[20] Zhang A F, Hou K K, Gu L, Dai C Y, Liu M, Song C S, Guo X W. Chem. Mater., 2012, 24: 1005.
[21] Chen Y, Wu L, Zhu J Y, Shen Y, Gan S W, Chen A Q. J. Porous. Mater., 2011, 18: 251.
[22] Chen Y, Wu H Q, Gan S W, Wang Y H, Sun X L. J. Membr. Sci., 2012, 403/404: 94.
[23] Bian S J, Gao K, Shen H J, Jiang X H, Long Y F, Chen Y. J. Mater. Chem. B, 2013, 1: 3267.
[24] Tan W M, Huang N, Wang L J, Song T S, Lu C H, Wang L F, Zhang J Z. J. Solid State Chem., 2013, 201: 13.
[25] Lai P, Hu M Z, Shi D L, Blom D. Chem. Commun., 2008, 1338.
[26] Keller A, Kirmayer S, Segal-Peretz T, Frey G L. Langmuir, 2012, 28: 1506.
[27] Yamauchi Y, Suzuki N, Kimura T. Chem. Commun., 2009, 5689.
[28] Suzuki N, Kimura T, Yamauchi Y. J. Mater. Chem., 2010, 20: 5294.
[29] Yamaguchi A, Kaneda H, Fu W S, Teramae N. Adv. Mater., 2008, 20: 1034.
[30] Alsyouri H M, Li D, Lin Y S, Ye Z, Zhu S P. J. Membr. Sci., 2006, 282: 266.
[31] Seshadri S K, Alsyouri H M, Lin Y S. Micropor. Mesopor. Mater., 2010, 129 : 228.
[32] Lee K J, Min S H, Jang Y. Small, 2008, 4(11): 1945.
[33] Guo L M, Fan Y, Teramae N. New J. Chem., 2012, 36: 1301.
[34] Guo L M, Fan Y, Arafune H, Teramae N. Micropor. Mesopor. Mater., 2012, 162: 122.
[35] Min S H, Bae J, Jang J, Lee K J. Nanotechnology, 2013, 24: 255602.
[36] Yao B, Fleming D, Morris M A, Lawrence S E. Chem. Mater., 2004, 16: 4851.
[37] Jin K W, Yao B, Wang N. Chem. Phys. Lett., 2005, 409: 172.
[38] Yoo S, Ford D M, Shantz D F. Langmuir, 2006, 22: 1839.
[39] Platschek B, Köhn R, Döblinger M, Bein T. ChemPhysChem, 2008, 9: 2059.
[40] Chen Y, Bian S J, Gao K, Cao Y Y, Wu H Q, Liu C X, Jiang X H, Sun X L. J. Membr. Sci., 2014, 457: 9.
[41] El-Safty S, Shahat A, Awual M R, Mekawy M. J. Mater. Chem., 2011, 21: 5593.
[42] Lu S, An Z, He J, Li B. J. Mater. Chem., 2012, 22: 3882.
[43] Hua D R, Li P P, Wu Y L, Chen Y, Yang M D, Dang J, Xie Q H, Liu J, Sun X Y. J. Ind. Eng. Chem., 2013, 19: 1395.
[44] Yang S H, Ko E H, Choi I S. Macromol. Res., 2011, 19(5): 511.
[45] Osei-Prempeh G, Lehmler H, Rankin S E, Knutson B L. Ind. Eng. Chem. Res., 2011, 50: 5510.
[46] Calvo A, Joselevich M, Soler-Illia G J, Williams F J. Micropor. Mesopor. Mater., 2009, 121: 67.
[47] Krohm F, Didzoleit H, Schulze M, Dietz C, Stark R W, Hess C, Stühn B, Brunsen A. Langmuir, 2014, 30: 369.
[48] Choi Y, Kim Y, Kim H K, Lee J S. J. Membr. Sci., 2010, 357: 199.
[49] Innocenzi P, Malfatti L. Chem. Soc. Rev., 2013, 42: 4198.
[50] Gargiulo N, Santo I D, Causa F, Caputo D, Netti P A. Micropor. Mesopor. Mater., 2013,167 : 71.
[51] Martin C R, Siwy Z. Nat. Mater., 2004, 3: 284.
[52] Mekawy M M, Yamaguchi A, El-Safty S A, Itoh T, Teramae N. J. Colloid Interface Sci., 2011, 355: 348.
[53] El-Safty S A, Hoa N D, Shenashen M A. Eur. J. Inorg. Chem., 2012, 5439.
[54] Chen Y, Yamaguchi A, Atou T, Morita K, Teramae N. Chem. Lett., 2006, 35(12): 1352.
[55] Chae W S, Kim E M, Yu H, Jeon S, Jung J S. J. Nanosci. Nanotechnol., 2012, 12(4): 3501.
[56] Mekawy M M. Res. Chem. Intermed., 2011, 37: 719.
[57] Itoh T, Shimomura T, Hasegawa Y, Mizuguchi J, Hanaoka T, Hayashi A, Yamaguchi A, Teramae N, Ono M, Mizukami F. J. Mater. Chem., 2011, 21: 251.
[58] Shimomura T, Itoh T, Sumiya T, Mizukami F, Ono M. Sens. Actuators B, 2008,135: 268.
[59] Shimomura T, Itoh T, Sumiya T, Mizukami F, Ono M. Talanta, 2009, 78: 217.
[60] Shimomura T, Itoh T, Sumiya T, Mizukami F, Ono M. Enzyme Microb. Technol., 2009, 45: 443.
[61] Chen X T, Yamaguchi A, Namekawa M, Kamijo T, Teramae N, Tong A J. Anal. Chim. Acta, 2011, 696: 94.
[62] Cauda V, Onida B, Platschek B, Mühlstein L, Bein T. J. Mater. Chem., 2008, 18: 5888.
[63] Cauda V, Mühlstein L, Onida B, Bein T. Micropor. Mesopor. Mater., 2009, 118: 435.
[64] Lee K J, Min S H, Jang J. Chem. Eur. J., 2009, 15: 2491.
[65] Wang X C, Liu J, Zhang S J, Chimin D. Synth. Met., 2012, 162: 1459.
[66] Yamauchi Y, Kimura T. Chem. Commun., 2013, 49: 11424.
[67] Huang L, Chen Y, Bian S J, Huang Y F, Tian Z Q, Zhan D P. Chem. Eur. J., 2014, 20: 724.

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[5] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[6] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[7] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[8] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[9] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[10] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[11] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[12] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[13] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[14] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[15] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.