中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (08): 1307-1316 DOI: 10.7536/PC140208 Previous Articles   Next Articles

• Review •

Metal Catalysts and Reaction Mechanisms in Propylene Epoxidation in Gas-Phase by Molecular Oxygen

Pang Yijun, Chen Xiaohui*, Xu Chengzhi, Lei Yangjun, Wei Kemei   

  1. School of Chemical Engineering, National Engineering Research Center for Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 2097630)

PDF ( 1193 ) Cited
Export

EndNote

Ris

BibTeX

Propylene oxide (PO) is an important intermediate chemical and is widely used in chemical, pharmaceutical, food, light industry and other industries. In industry, PO is produced via multiple reaction steps in the liquid phase, using hazardous chlorine or costly organic hydroperoxides as oxidants. Considering the inherent defects of the traditional processes——the chlorohydrin and hydroperoxide process, a new production technology that propylene oxide production via hydrogen peroxide (HPPO) has been developed, but many problems such as the catalyst mass transfer limitation, the catalyst deactivation and regeneration, and the need of a dedicated hydrogen peroxide production plant are encountered. So, a more attractive method for PO production with molecular oxygen by gas-phase is discussed in this paper. The most important new developments for the production of propylene oxide discussed in this paper are concentrated on the supported gold, silver, copper, vanadium, molten salt catalysts and other catalysts that used molecular oxygen as the oxygen source. At the same time, the mechanism involved in the propylene epoxidation such as the Ti active sites mechanism in Au/Ti catalysts, the OMMP (OMMP refers to a ring made up of one oxygen atom, two metal atoms and a propylene unit) intermediate mechanism in silver and copper catalysts and the radical mechanism in silver and other metal oxide catalysts are also mentioned in this paper.

Contents
1 Introduction
2 Research progress in propylene epoxidation reaction
2.1 Ag catalysts
2.2 Au catalysts
2.3 Cu catalysts
2.4 Bi and Mo catalysts
2.5 Multi-metal catalysts
2.6 Molten salts catalysts
2.7 Others
3 Conclusion and outlook

CLC Number: 

[1] Eissen M, Metzger J O, Schmidt E, Schneidewind U. Angew. Chem. Int. Ed., 2002, 41(3): 414.
[2] Nijhuis T A, Makkee M, Moulijn J A, Weckhuysen B M. Ind. Eng. Chem. Res., 2006, 45(10): 3447.
[3] Russo V, Tesser R, Santacesaria E, di Serio M. Ind. Eng. Chem. Res., 2013, 52(3): 1168.
[4] Bassler P, Hans-Georg-Göbbel M W. Chem. Eng. (N.Y.), 2010, 21.
[5] 朱斌(Zhu B). 石油学报 (石油加工) (Acta Petrolel Sinica (Petroleum Processing Section)), 2013, 29(2): 223.
[6] 李涛(Li T). 石油化工技术与经济(Technology & Economics in Petrochemicals), 2012, 28(3): 2.
[7] 朱留琴(Zhu L Q). 精细石油化工进展(Advances in Fine Petrochemicals), 2012, 13(10): 39.
[8] 韩勇春(Han Y C). 中国石油和化工经济分析(Petroleum & Chemical), 2013,(6): 51.
[9] 焦亦麟(Jiao Y L). 广州化工(Guangzhou Chemical Industry), 2013, 41(3): 5.
[10] 李民堂(Li M T), 王旭忠(Wang X Z). 江苏氯碱(Jiangsu Lü Jian), 2013,(3): 2.
[11] 王野(Wang Y), 朱文明(Zhu W M), 张庆红(Zhang Q H). 催化学报(Chin. J. Catal.), 2008, 29(9): 857.
[12] 苏暐光(Su W G). 广东化工(Guangdong Chemical Industry), 2013, 40(1): 55.
[13] Linic S, Barteau M A. J. Am. Chem. Soc., 2002, 124(2): 310.
[14] Torres D, Lopez N, Illas F, Lambert R M. Angew. Chem., 2007, 119(12): 2101.
[15] Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans R, Elam J, Meyer R, Redfern P C. Science, 2010, 328(5975): 224.
[16] Kulkarni A, Bedolla-Pantoja M, Singh S, Lobo R F, Mavrikakis M, Barteau M A. Top. Catal., 2012, 55(1/2): 3.
[17] Hu Z M, Nakai H, Nakatsuji H. Surf. Sci., 1998, 401(3): 371.
[18] Lu G, Zuo X. Catal. Lett., 1999, 58(1): 67.
[19] Jin G, Lu G, Guo Y, Guo Y, Wang J, Liu X, Kong W, Liu X. Catal. Lett., 2004, 97(3/4): 191.
[20] Seubsai A, Senkan S. ChemCatChem, 2011, 3(11): 1751.
[21] Jin G, Lu G, Guo Y, Guo Y, Wang J, Kong W, Liu X. J. Mol. Catal. A: Chem., 2005, 232(1): 165.
[22] Lu J, Bravo-Suárez J J, Takahashi A, Haruta M, Oyama S T. J. Catal., 2005, 232(1): 85.
[23] Lu J, Bravo-Suárez J J, Haruta M, Oyama S T. Appl. Catal. A, 2006, 302(2): 283.
[24] Yao W, Guo Y L, Liu X H, Guo Y, Wang Y Q, Wang Y S, Zhang Z G, Lu G Z. Catal. Lett., 2007, 119(1/2): 185.
[25] Wang R, Guo X, Wang X, Hao J, Li G, Xiu J. Appl. Catal. A, 2004, 261(1): 7.
[26] De Oliveira A L, Wolf A, Schüth F. Catal. Lett., 2001, 73(2/4): 157.
[27] Hayashi T, Tanaka K, Haruta M. J. Catal., 1998, 178(2): 566.
[28] Haruta M, Uphade B, Tsubota S, Miyamoto A. Res. Chem. Intermed., 1998, 24(3): 329.
[29] Nijhuis T A, Huizinga B J, Makkee M, Moulijn J A. Ind. Eng. Chem. Res., 1999, 38(3): 884.
[30] Stangland E E, Taylor B, Andres R P, Delgass W N. J. Phys. Chem. B, 2005, 109(6): 2321.
[31] Sinha A K, Seelan S, Tsubota S, Haruta M. Angew. Chem. Int. Ed., 2004, 43(12): 1546.
[32] Taylor B, Lauterbach J, Delgass W. Appl. Catal. A, 2005, 291(1): 188.
[33] Zhan G, Du M, Huang J, Li Q. Catal. Commun., 2011, 12(9): 830.
[34] Bravo-Suarez J J, Bando K K, Lu J, Haruta M, Fujitani T, Oyama T. J. Phys. Chem. C, 2008, 112(4): 1115.
[35] Clerici M G, Bellussi G, Romano U. J. Catal., 1991, 129(1): 159.
[36] Joshi A M, Delgass W N, Thomson K T. J. Phys. Chem. C, 2007, 111(22): 7841.
[37] Wells D H, Delgass W N, Thomson K T. J. Am. Chem. Soc., 2004, 126(9): 2956.
[38] Chowdhury B, Bravo-Suárez J J, Mimura N, Lu J, Bando K K, Tsubota S, Haruta M. J. Phys. Chem. B, 2006, 110(46): 22995.
[39] Bravo-Suárez J, Bando K, Akita T, Fujitani T, Fuhrer T, Oyama S. Chem. Commun., 2008,(28): 3272.
[40] Sivadinarayana C, Choudhary T V, Daemen L L, Eckert J, Goodman D W. J. Am. Chem. Soc., 2004, 126(1): 38.
[41] Huang J, Akita T, Faye J, Fujitani T, Takei T, Haruta M. Angew. Chem. Int. Ed., 2009, 48(42): 7862.
[42] Huang J, Takei T, Ohashi H, Haruta M. Appl. Catal. A, 2012, 435: 115.
[43] Ojeda M, Iglesia E. Chem. Commun., 2009, 352.
[44] Chang C R, Wang Y G, Li J. Nano Res., 2011, 4(1): 131.
[45] Kapoor M, Sinha A, Seelan S, Inagaki S, Tsubota S, Yoshida H, Haruta M. Chem. Commun., 2002,(23): 2902.
[46] Lu J, Zhang X, Bravo-Suárez J J, Bando K K, Fujitani T, Oyama S T. J. Catal., 2007, 250(2): 350.
[47] Huang J, Takei T, Akita T, Ohashi H, Haruta M. Appl. Catal. B, 2010, 95(3): 430.
[48] Lee W S. Proceeding of 23rd North American Catalysis Society Meeting, 2013.
[49] Lee W S, Zhang R, Akatay M C, Baertsch C D, Stach E A, Ribeiro F H, Delgass W N. ACS Catal., 2011, 1(10): 1327.
[50] Lee W S, Cem A M, Stach E A, Ribeiro F H, Delgass W N. J. Catal., 2012, 287: 178.
[51] Lee W S, Cem A M, Stach E A, Ribeiro F H, Delgass W N. J. Catal., 2013, 308: 98.
[52] Lu J, Zhang X, Bravo-Suárez J J, Fujitani T, Oyama S T. Catal. Today, 2009, 147(3): 186.
[53] Liu T, Hacarlioglu P, Oyama S T, Luo M F, Pan X R, Lu J Q. J. Catal., 2009, 267(2): 202.
[54] 张超(Zhang C), 潘小荣(Pan X R), 罗孟飞(Luo M F), 鲁继青(Lu J Q). 浙江师范大学学报 (自然科学版)(Journal of Zhejiang Normal University, Natural Science Edition), 2012, 35(3): 305.
[55] Taylor B, Lauterbach J, Delgass W N. Appl. Catal. A, 2005, 291(1/2): 188.
[56] Joshi A M, Delgass W N, Thomson K T. J. Phys. Chem. C, 2007, 111(22): 7841.
[57] Lee W S, Lai L C, Cem A M, Stach E A, Ribeiro F H, Delgass W N. J. Catal., 2012, 296: 31.
[58] Lu X, Zhao G F, Lu Y. Catal. Sci. Technol., 2013, 3: 2906.
[59] Campos-Martin J M, Blanco-Brieva G, Fierro J L. Angew. Chem. Int. Ed., 2006, 45(42): 6962.
[60] Wang F, Qi C, Ma J. Catal. Commun., 2007, 8(12): 1947.
[61] Cumaranatunge L, Delgass W N. J. Catal., 2005, 232(1): 38.
[62] Lee S, Molina L M, López M J, Alonso J A, Hammer B, Lee B, Seifert S, Winans R E, Elam J W, Pellin M J. Angew. Chem., 2009, 121(8): 1495.
[63] Cropley R L, Williams F J, Urquhart A J, Vaughan O P, Tikhov M S, Lambert R M. J. Am. Chem. Soc., 2005, 127(16): 6069.
[64] Torres D, Neyman K M, Illas F. Chem. Phys. Lett., 2006, 429(1): 86.
[65] Vaughan O P, Kyriakou G, Macleod N, Tikhov M, Lambert R M. J. Catal., 2005, 236(2): 401.
[66] Su W, Wang S, Ying P, Feng Z, Li C. J. Catal., 2009, 268(1): 165.
[67] Chu H, Yang L, Zhang Q, Wang Y. J. Catal., 2006, 241(1): 225.
[68] Wang Y, Chu H, Zhu W, Zhang Q. Catal. Today, 2008, 131(1): 496.
[69] Zhu W, Zhang Q, Wang Y. J. Phys. Chem. C, 2008, 112(20): 7731.
[70] He J, Zhai Q, Zhang Q, Deng W, Wang Y. J. Catal., 2013, 299: 53.
[71] Jin Q W, Wang K X, Wang J Q, Li X B, Chen J S. Chem. Res. Chin. Univ., 2011, 27(5):886.
[72] Seubsai A, Kahn M, Senkan S. ChemCatChem, 2011, 3(1): 174.
[73] Long W, Zhai Q, He J, Zhang Q, Deng W, Wang Y. ChemPlusChem, 2012, 77(1): 27.
[74] Miller A, Zohour B, Seubsai A, Noon D, Senkan S. Ind. Eng. Chem. Res., 2013, 52(28): 9551.
[75] Chen K, Bell A T, Iglesia E. J. Catal., 2002, 209(1): 35.
[76] Liu H, Iglesia E. J. Catal., 2002, 208(1): 1.
[77] Brandhorst M, Cristol S, Capron M, Dujardin C, Vezin H, Payen E. Catal. Today, 2006, 113(1): 34.
[78] Song Z, Mimura N, Bravo-Suárez J J, Akita T, Tsubota S, Oyama S T. Appl. Catal. A, 2007, 316(2): 142.
[79] Horváth B, Hronec M, Vávra I, Šustek M, Kri?anová Z, Dérer J, Dobro?ka E. Catal. Commun., 2013, 34: 16.
[80] Feng X, Qi X, Li J, Yang L, Qiu M, Yin J, Lu F, Zhong J. Appl. Surf. Sci., 2011, 257(13): 5571.
[81] Zhang L, Wang W Z, Sun S M, Xu J H, Shang M, Ren J. Appl. Catal. B, 2010, 100(1): 97.
[82] Chen R, Bi J, Wu L, Wang W, Li Z, Fu X. Inorg. Chem., 2009, 48(19): 9072.
[83] Zhao Z, Kobayashi T. Appl. Catal. A, 2001, 207(1): 139.
[84] Barreca D, Morazzoni F, Rizzi G A, Scotti R, Tondello E. Physical Chemistry Chemical Physics, 2001, 3(9): 1743.
[85] Fielicke A, Rademann K. J. Phys. Chem. A, 2000, 104(30): 6979.
[86] Chen X H, Su J F, Wei K M. J. Chem. Ind. Eng. Chin., 2004, 55(11): 1815.
[87] 陈晓晖(Chen X H), 郑婧(Zheng J), 黄清明(Huang Q M), 程燕(Chen Y), 魏可镁(Wei K M), CN 101229510, 2008.
[88] Pang Y J, Chen X H, Xu C Z, Lei Y J, Wei K M. ChemCatChem, 2014, 6(3): 876.
[89] Burrington J D, Grasselli R K. J. Catal., 1979, 59(1): 79.
[90] Peacock J, Parker A, Ashmore P, Hockey J. J. Catal., 1969, 15(4): 373.
[91] Chen J G, Menning C A, Zellner M B. Surf. Sci. Rep., 2008, 63(5): 201.
[92] Yang L, He J, Zhang Q, Wang Y. J. Catal., 2010, 276(1): 76.
[93] Zheng X, Zhang Q, Guo Y, Zhan W, Guo Y, Wang Y, Lu G. J. Mol. Catal. A: Chem., 2012, 357: 106.
[94] Pennington B T, US Patent 4785123, 1988.
[95] Meyer J L, Pennington B T, US Patent 4992567, 1991.
[96] Nijhuis T, Musch S, Makkee M, Moulijn J. Appl. Catal. A, 2000, 196(2): 217.
[97] Held A, Kowalska-Ku? J, Nowińska K. Catal. Commun., 2012, 17: 108.
[98] Liu Y, Murata K, Inaba M, Mimura N. Appl. Catal. A, 2006, 309(1): 91.
[99] Mimura N, Tsubota S, Murata K, Bando K K, Bravo-Suárez J J, Haruta M, Oyama S T. Catal. Lett., 2006, 110(1/2): 47.
[100] Martir W, Lunsford J H. J. Am. Chem. Soc., 1981, 103(13): 3728.
[101] Driscoll D J, Campbell K D, Lunsford J H. Adv. Catal., 1987, 35: 139.
[102] Orzesek H, Schulz R P, Dingerdissen U, Maier W F. Chem. Eng. Technol., 1999, 22(8): 691.
[103] Carter E A, Goddard W A. J. Catal., 1988, 112(1): 80.

[1] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[2] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[3] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[4] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[5] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[6] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[7] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[8] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[9] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[10] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[11] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.
[12] Shaoming Qiao, Naibao Huang, Zhengyuan Gao, Shixian Zhou, Yin Sun. Nickel-Manganese Binary Metal Oxide as Electrode Materials for Supercapacitors [J]. Progress in Chemistry, 2019, 31(8): 1177-1186.
[13] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[14] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[15] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.