中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (06): 909-918 DOI: 10.7536/PC140123 Previous Articles   Next Articles

• Review •

Single Molecular Rotary Machine

Wang Guangxia1, Che Yanke*1, Jiang Hua*1,2   

  1. 1. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. College of Chemistry, Beijing Normal University, Beijing 100875, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China(No. 21125205, 21332008)

PDF ( 2200 ) Cited
Export

EndNote

Ris

BibTeX

The concept of a machine can be extended to the molecular level. A molecular-level machine can be defined as an assembly of molecular components designed to perform mechanical-like movements as a consequence of appropriate external stimuli, such as chemical energy, electrical energy and light. Artificial molecular machines show potential applications in the field of nanotechnology, which attract chemists with great interest. The two basic movements of artificial molecular machines are linear motion and rotary motion. We limit our discussion to the rotary motion and describe the different types of rotary motors in this review. The structure of this rotational molecular machine consists of axis, a rotator and a stator. The rotator winds around the stator through the axis in the way of bidirectional or unidirectional rotation. We describe the designs and dynamic behaviors of single molecular rotary machines in solution, which mainly include molecular gear, motor, molecular turnstile, molecular brake and ratchet.

Contents
1 Introduction
2 Molecular gears
2.1 Bevel gear
2.2 Spur gear
3 Molecular turnstile
4 Molecular brake and ratchet
4.1 Molecular brake
4.2 Molecular ratchet
5 Molecular motor
5.1 Chemical-driven molecular motor
5.2 Light-driven molecular motor
6 Conclusion and outlook1 Introduction
2 Molecular gears
2.1 Bevel gear
2.2 Spur gear
3 Molecular turnstile
4 Molecular brake and ratchet
4.1 Molecular brake
4.2 Molecular ratchet
5 Molecular motor
5.1 Chemical-driven molecular motor
5.2 Light-driven molecular motor
6 Conclusion and outlook1 Introduction
2 Molecular gears
2.1 Bevel gear
2.2 Spur gear
3 Molecular turnstile
4 Molecular brake and ratchet
4.1 Molecular brake
4.2 Molecular ratchet
5 Molecular motor
5.1 Chemical-driven molecular motor
5.2 Light-driven molecular motor
6 Conclusion and outlook

CLC Number: 

[1] Feynman R P. Eng. Sci., 1960, 23: 22.
[2] Sauvage J P. Acc. Chem. Res., 1998, 31: 611.
[3] Ballardini R, Balzani V, Credi A, Gandolfi M T, Venturi M. Acc. Chem. Res., 2001, 34: 445.
[4] Kelly T R. Acc. Chem. Res., 2001, 34: 514.
[5] Kottas G S, Clarke L I, Horinek D, Michl J. Chem. Rev., 2005, 105: 1281.
[6] Kay E R, Leigh D A, Zerbetto F. Angew. Chem. Int. Ed., 2007, 46: 72.
[7] Michl J, Sykes E C H. ACS Nano, 2009, 3: 1042.
[8] Ma X, Tian H. Chem. Soc. Rev., 2010, 39: 70.
[9] Zheng Y B, Hao Q Z, Yang Y W, Kiraly B, Chiang I K, Huang T J. J. Nanophoton., 2010, 4: 042501.
[10] Balzani V, Gomez-Lopez M, Stoddart J F. Acc. Chem. Res.,1998, 31: 405.
[11] Balzani V, Credi A, Raymo F M, Stoddart J F. Angew. Chem. Int. Ed., 2000, 39: 3348.
[12] 马骧(Ma X),王巧纯(Wang Q C),田禾(Tian H). 化学进展(Progress in Chemistry), 2009, 21: 106.
[13] 田禾(Tian H),王利民(Wang L M),译(Trans.). 分子器件与分子机器通向纳米世界的捷径(Molecular Devices and Machines A Journey into the Nanoworld). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2005.
[14] Kottas G S, Clarke L I, Horinek D, Michl J. Chem. Rev., 2005, 105: 1281.
[15] Wenz G, Han B H, Mller A. Chem. Rev., 2006, 106: 782.
[16] Balzani V, Credi A, Silvi S, Venturi M. Chem. Soc. Rev., 2006, 35: 1135.
[17] Feringa B L. J. Org. Chem., 2007, 72: 6635.
[18] Credi A, Tian H. Adv. Funct. Mater., 2007, 17: 679.
[19] 张鑫然(Zhang X R).[2014-01-01]. http://ub1010.51.net/science/other/fenzijiqi.htm
[20] Kelly T R, Michael C, Bowyer K, Vijaya B, David B, Albert G, Fengrui L, Min H K, Michael P J. J. Am. Chem. Soc., 1994, 116: 3657.
[21] Yang C H, Prabhakar C, Huang S L, Lin Y C, Tan W S, Misra N C, Sun W T, Yang J S. Org. Lett., 2011, 13: 5632.
[22] Sun W T, Huang S L, Yao H H, Chen I C, Lin Y C, Yang J S. Org. Lett., 2012, 14/16: 4154.
[23] Parag V J, Richard E B, Dallas K B. J. Org. Chem., 2003, 68: 8240.
[24] Harrington L E, Cahill L S, McGlinchey M J. Organometallics, 2004, 23: 2884.
[25] Nikitin K, Müller B H, Ortin Y, Muldoon J, McGlinchey M J. J. Am. Chem. Soc., 2010, 132: 17617.
[26] Kelly T R, Silva D H, Silva R A. Nature, 1999, 401: 150.
[27] Richard A D, Matthijs K J W, Pollard M M, Vicario J, Koumura N, Feringa B L. Nature, 2005, 437: 1337.
[28] Huck N P M, Jager W F, Lange B, Feringa B L. Science, 2001, 273: 1686.
[29] Wiel M K J, Delden R A, Meetsma A, Feringa B L. J. Am. Chem. Soc., 2005, 127: 14208.
[30] Feringa B L. J. Org. Chem., 2007, 72: 6635.
[31] Klok M, Boyle N, Pryce M T, Meetsma A, Browne W R, Feringa B L. J. Am. Chem. Soc., 2008, 130: 10484.
[32] Dominguez Z, Dang H, Strouse M J, Garcia-Garibay M A. J. Am. Chem. Soc., 2002, 124: 2398.
[33] Gould S L, Tranchemontagne D, Yaghi O M, Garcia-Garibay M A. J. Am. Chem. Soc., 2008, 130: 3246.
[34] O'Brien Z J, Natarajan A, Khan S, Garcia-Garibay M A. Cryst. Growth. Des., 2011, 11: 2654.
[35] Hughs M, Jimenez M, Khan S, Garcia-Garibay Miguel A. J. Org. Chem., 2013, 78: 5293.
[36] Shima T, Hampel F, Gladysz J A. Angew. Chem. Int. Ed., 2004, 43: 5537.
[37] Nawara A J, Shima T, Frank H, Gladysz J A. J. Am. Chem. Soc., 2006, 128: 4962.
[38] Hess G D, Hampel F, Gladysz J A. Organometallics, 2007, 26: 5129.
[39] Dial B E, Rasberry R D, Bullock B N, Smith M D, Pellechia P J, Profeta S Jr, Shimizu K D. Org. Lett., 2011, 13: 244.
[40] Setaka W, Yamaguchi K. J. Am. Chem. Soc., 2012, 134: 12458.
[41] Setaka W, Koyama A, Yamaguchi K. Org. Lett., 2013, 15: 5092.
[42] Setaka W, Yamaguchi K. J. Am. Chem. Soc., 2013, 135: 14560.
[43] Anelli P L, Spencer N, Stoddart J F. J. Am. Chem. Soc., 1991, 113: 5131.
[44] Sauvage J P. Science, 2001, 291: 2105.
[45] Inoue Y, Kuad P, Okumura Y, Takashima Y, Yamaguchi H, Harada A. J. Am. Chem. Soc., 2007, 129: 6396.
[46] Gao C, Ma X, Zhang Q, Wang Q C, Qu D H, Tian H. Org. Bio. Chem., 2011, 9: 1126.
[47] Zhang H, Zhou B, Li H, Qu D H, Tian H. J. Org. Chem., 2013, 78: 2091.
[48] Sun R Y, Xue C M, Ma X, Gao M, Tian H, Li Q. J. Am. Chem. Soc., 2013, 135: 5990.
[49] Gan Q, Bao C, Brice K, Axelle G, Xiang J F, Liu S H, Ivan H, Jiang H. Angew. Chem. Int. Ed. Engl., 2008, 120: 1739.
[50] Gan Q, Ferrand Y, Bao C Y, Brice K, Axelle G, Jiang H, Ivan H. Science, 2011, 331: 1172.
[51] Joosten A, Trolez Y, Collin J P, Heitz V, Sauvage J P. J. Am. Chem. Soc., 2012, 134: 1802.
[52] Daniela S, Andrew G W L, John E W. Science, 1999, 286: 1700.
[53] Yoshihiro S, Yuko I, Mikio T, Hiroshi O, Atsuko I K, Ikuo U, Toshio Y, Yoh W, Masamitsu F. Science, 1999, 286: 1722.
[54] Pijper D, Feringa B L. Angew. Chem. Int. Ed., 2007, 46: 3693.
[55] Wang J B, Feringa B L. Science, 2011, 331: 1429.
[56] Zhang D, Zhang Q, Su J H, Tian H. Chem. Commun., 2009, 1700.
[57] Landge S M, Aprahamian I. J. Am. Chem. Soc., 2009, 131: 18269.
[58] Balzani V, Credi A, Raymo F M, Stoddart J F. Angew Chem. Int. Ed., 2000, 39: 3349.
[59] Browne W R, Feringa B L. Nat. Nanotechnol., 2006, 1: 25.
[60] Kay E R, Leigh D A, Zerbetto F. Angew. Chem. Int. Ed., 2007, 46: 72.
[61] Khuong T V, Nunez J E, Godinez C E, Garcia-Garibay M A. Acc. Chem. Res., 2006, 39: 413.
[62] 邓超(Deng C),韩军(Han J), 滕明瑜(Teng M Y),赵德阳(Zhao D Y),王乐勇(Wang L Y). 化学进展(Progress in Chemistry), 2010, 22: 1021.
[63] Sauvage J P. Molecular Machines and Motors. See Kelly T R, Sestelo J P. 2001. 99: 19.
[64] Yamamoto G, Suzuki M, Oki M. Angew. Chem. Int. Ed. Engl., 1981, 20: 607.
[65] Cozzi F, Guenzi A, Johnson C A, Mislow K. J. Am. Chem. Soc., 1981, 103: 957.
[66] Kawada Y, Iwamura H. J. Am. Chem. Soc., 1981, 103: 950.
[67] Koga N, Kawada Y, Iwamura H. J. Am. Chem. Soc., 1983, 105: 5498.
[68] Setaka W, Nirengi T, Kabuto C, Kira M. J. Am. Chem. Soc., 2008, 130: 15762.
[69] Kao C Y, Hsu Y T, Lu H F, Chao I, Huang S L, Lin Y C, Sun W T, Yang J S. J. Org. Chem., 2011, 76: 5782.
[70] Frantz D K, Baldridge K K, Siegel J S. Chimia, 2009, 63: 201.
[71] Frantz D K, Linden A, Baldridge K K, Siegel J S. J. Am. Chem. Soc., 2012, 134: 1528.
[72] Bedard T C, Moore J S. J. Am. Chem. Soc., 1995, 117: 10662.
[73] Guenet A, Graf E, Kyritsakas N, Hosseini M W. Inorg. Chem., 2010, 49: 1872.
[74] Lang T, Guenet A, Graf E, Kyritsakas N, Hosseini M W. Chem. Commun., 2010, 46: 3508.
[75] Guenet A, Graf E, Kyritsakas N, Hosseini M W. Chem. Eur. J., 2011, 17: 6443.
[76] Lang T, Graf E, Kyritsakas N, Hosseini M W. Dalton Trans., 2011, 40: 3517.
[77] Lang T, Graf E, Kyritsakas N, Hosseini M W. Dalton Trans., 2011, 40: 5244.
[78] Lang T, Graf E, Kyritsakas N, Hosseini M W. Chem. Eur. J., 2012, 18: 10419.
[79] Yang J S, Huang Y H, Ho J H, Sun W T, Huang H H, Lin Y C, Huang S J, Huang S L, Lu H F, Chao I. Org. Lett., 2008, 10: 2279.
[80] Dial B E, Pellechia P J, Smith M D, Shimizu K D. J. Am. Chem. Soc., 2012, 134: 3675.
[81] Kelly T R, Tellitu I, Sestelo J P. Angew. Chem. Int. Ed., 1997, 36: 1866.
[82] Kelly T R, Sestelo J P, Tellitu I. J. Org. Chem., 1998, 63: 3655.
[83] Kelly T R, Silva D H, Silva R A. Nature, 1999, 401: 150.
[84] Kelly T R, Cai X, Damkaci F, Panicker S B, Tu B, Bushell S M, Cornella I, Piggott M J, Salives R, Cavero M, Zhao Y J, Jasmin S. J. Am. Chem. Soc., 2007, 129: 376.
[85] Fletcher S P, Dumur F, Pollard M M, Feringa B L. Science, 2005, 310: 80.
[86] Koumura N, Zijlstra R W J, Richard A D, Harada N, Feringa B L. Nature, 1999, 401: 152.
[87] Koumura N, Edzard M G, Marc B G, Meetsma A, Feringa B L. J. Am. Chem. Soc., 2002, 124: 5037.
[88] Richard A D, Nina P M H, Jacob J P, John M W, Stefan C J M, Harry P J M D, Feringa B L. J. Am. Chem. Soc., 2003, 125: 15659.
[89] Dirk P, Richard A D, Auke M, Feringa B L. J. Am. Chem. Soc., 2005, 127: 17612.
[90] Artem A K, Emile M M, Martin K, Auke M, Albert M B, Feringa B L. J. Org. Chem., 2010, 75: 666.
[91] Tatiana F L, London G, Michael M P, Petra R, Feringa B L. J. Org. Chem., 2010, 75: 5323.
[92] Anouk S L, Nopporn R, Giuseppe G, Feringa B L. J. Org. Chem., 2011, 76: 8599.
[93] Lewandowski B, Guillaume D B, Ward J W, Papmeyer M, Kuschel S, Aldegunde M J, Gramlich P M E, Heckmann D, Goldup S M, D' Souza D M, Fernandes A E, Leigh D A. Science, 2013, 339: 189.

[1] Hanxiao Wang, Ying Han, Chuanfeng Chen*. The Directional Threading of Guests and Construction of Orientational Assemblies Based on Three-Dimensional Nonsymmetrical Hosts [J]. Progress in Chemistry, 2018, 30(5): 616-627.
[2] Zhang Shuangjin, Yang Yang, Sun Xiaoqiang, Yin Fanghua, Jiang Juli, Wang Leyong. Molecular Machines Driven by Acid-Base Chemistry and Their Applications [J]. Progress in Chemistry, 2016, 28(2/3): 244-259.
[3] Yang Zaiwen, Liu Xiangrong, Zhao Shunsheng, He Jinmei. Chemically Driven [2] Rotaxane Molecular Shuttles [J]. Progress in Chemistry, 2014, 26(12): 1899-1913.
[4] . Novel Molecular Machine Based on the Cyclodextrin—Fullerene Coupling System [J]. Progress in Chemistry, 2010, 22(11): 2156-2164.
[5] Deng Chao Han Jun Teng Mingyu Zhao Deyang Wang Leyong. Design, Synthesis, and Assembly of Gyroscope-like Molecules [J]. Progress in Chemistry, 2010, 22(06): 1021-1034.
[6] . Click Chemistry and Functional Organic/ Polymeric Materials [J]. Progress in Chemistry, 2010, 22(0203): 406-416.
Viewed
Full text


Abstract

Single Molecular Rotary Machine